Processing math: 0%

KC Sinha Mathematics Solution Class 12 Chapter 5 आव्यूह ( Matrices ) Exercise 5.4 (Q6-Q10)



Exercise 5.4

Question 6
\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]
Sol :
A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]

A=IA

\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A

R1↔R2

\left[\begin{array}{ll}5 & 7 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] A

R1→R1-2R

\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]=\left[\begin{array}{cc}-2 & 1 \\ 1 & 0\end{array}\right]A

R2→R2-2R

\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-2 & 1 \\ 5 & -2\end{array}\right]A

R1→R1-R

\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-7 & 3 \\ 5 & -2\end{array}\right]A

A^{-1}=\left[\begin{array}{rr}-7 & 3 \\ 5 & -2\end{array}\right]


Question 7
\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]
Sol :
A=\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]

A=IA

\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A

R1→R1-R

\left[\begin{array}{ll}1 & 1 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right] A

R2→R2-3R

\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ -3 & 4\end{array}\right] A

R1→R1-R

\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}4 & -5 \\ -3 & 4\end{array}\right]A

A^{-1}=\left[\begin{array}{cc}4 & -5 \\ -3 & 4\end{array}\right]


Question 8
\left[\begin{array}{rr}3 & -1 \\ -4 & 2\end{array}\right]
Sol :
A=\left[\begin{array}{cc}3 & -1 \\ -4 & 2\end{array}\right]

A=IA

\left[\begin{array}{cc}3 & -1 \\ -4 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A

R1→R1-R

\left[\begin{array}{cc}-1 & 1 \\ -4 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] A

R1→-1R

\left[\begin{array}{cc}1 & -1 \\ -4 & 2\end{array}\right]=\left[\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right] A

R2→R2+4R

\left[\begin{array}{cc}1 & -1 \\ 0 & -2\end{array}\right]=\left[\begin{array}{cc}-1 & -1 \\ -4 & -3\end{array}\right]A

R_{2} \rightarrow-\frac{1}{2} R_{2}

\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & -1 \\ 2 & \frac{3}{2}\end{array}\right]A

R1→R1-R

\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & \frac{1}{2} \\ 2 & \frac{3}{2}\end{array}\right]A

A^{-1}=\left[\begin{array}{ll}1 & \frac{1}{2} \\ 2 & \frac{3}{2}\end{array}\right]

Question 9
\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]
Sol :
A=\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]

A=IA

\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]A

R1↔R2

\left[\begin{array}{ll}4 & 2 \\ 2 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] A

R1→R1-2R

\left[\begin{array}{cc}0 & 0 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}-2 & 1 \\ 1 & 0\end{array}\right] A

∴ A-1 का अस्तित्व नही हैं


Question 10
\left[\begin{array}{rr}1 & -1 \\ 2 & 3\end{array}\right]
Sol :
A=\left[\begin{array}{rr}1 & -1 \\ 2 & 3\end{array}\right]

A=IA

\left[\begin{array}{rr}1 & -1 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]A

R2→R2-2R

\left[\begin{array}{cc}1 & -1 \\ 0 & 5\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right] A

R_{2} \rightarrow \frac{1}{5} R_{2}

\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -\frac{2}{5} & \frac{1}{5}\end{array}\right]A

R1→R1+R2

\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5}\end{array}\right]A

A^{-1}=\left[\begin{array}{cc}\frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5}\end{array}\right]


No comments:

Post a Comment

Home

Contact Form

Name

Email *

Message *