Exercise 5.2
Question 1
(i) यदि (If) A=[2 3 5] तथा (and) $B=\begin{bmatrix}1\\2\\3\end{bmatrix}$ , find AB निकालें
Sol :
Sol :
(ii) यदि (if) A=$\begin{bmatrix}2&1&3\\4&1&0\end{bmatrix}$ तथा B=$\begin{bmatrix}1&-1\\0&2\\5&0\end{bmatrix}$ AB और BA निकालें । (Find AB and BA)
Sol :
AB=$\begin{bmatrix}2&1&3\\4&1&0\end{bmatrix}$×$\begin{bmatrix}1&-1\\0&2\\5&0\end{bmatrix}$
=$\begin{bmatrix}2+0+15&-2+2+0\\4+0+0&-4+2+0\end{bmatrix}$
BA=$\begin{bmatrix}1&-1\\0&2\\5&0\end{bmatrix}$×$\begin{bmatrix}2&1&3\\4&1&0\end{bmatrix}$
=$\begin{bmatrix}2-4&1-1&3-0\\0+8&0+2&0+0\\10+0&5+0&15+0\end{bmatrix}$
=$\begin{bmatrix}-2&0&3\\8&2&0\\10&5&15\end{bmatrix}$
Question 2
Evaluate the following :
(i) $\left[\begin{array}{ll}0 & 2 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}4 & 6 \\ 0 & 0\end{array}\right]$
Sol :
(ii) $\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right]\left[\begin{array}{r}4 \\ -1\end{array}\right]$
Sol :
$=\left[\begin{array}{rr}4 & -3 \\ 8 & -1\end{array}\right]$
$=\left[\begin{array}{l}1 \\ 7\end{array}\right]$
(iii) $\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right][1~2~3]$
Sol :
$=\left[ \begin{array}{ccc}2 & 4 & 6 \\ 4 & 8 & 12 \\ 6 & 12 & 18\end{array}\right]$
(iv) [1~2~3]$\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$
Sol :
(v) $\left[\begin{array}{rrr}1 & 2 & -3 \\ -2 & 1 & 7\end{array}\right]\left[\begin{array}{lll}2 & 3 & 1 \\ 5 & 4 & 2 \\ 1 & 6 & 3\end{array}\right]$
(vi) $\left[\begin{array}{rrr}1 & 4 & 2 \\ 5 & -2 & 3\end{array}\right]\left[\begin{array}{rr}2 & -4 \\ 1 & -3 \\ 4 & 0\end{array}\right]$
(i) $\left[\begin{array}{ll}0 & 2 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}4 & 6 \\ 0 & 0\end{array}\right]$
Sol :
(ii) $\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right]\left[\begin{array}{r}4 \\ -1\end{array}\right]$
Sol :
$=\left[\begin{array}{rr}4 & -3 \\ 8 & -1\end{array}\right]$
$=\left[\begin{array}{l}1 \\ 7\end{array}\right]$
(iii) $\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right][1~2~3]$
Sol :
$=\left[ \begin{array}{ccc}2 & 4 & 6 \\ 4 & 8 & 12 \\ 6 & 12 & 18\end{array}\right]$
(iv) [1~2~3]$\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$
Sol :
(v) $\left[\begin{array}{rrr}1 & 2 & -3 \\ -2 & 1 & 7\end{array}\right]\left[\begin{array}{lll}2 & 3 & 1 \\ 5 & 4 & 2 \\ 1 & 6 & 3\end{array}\right]$
(vi) $\left[\begin{array}{rrr}1 & 4 & 2 \\ 5 & -2 & 3\end{array}\right]\left[\begin{array}{rr}2 & -4 \\ 1 & -3 \\ 4 & 0\end{array}\right]$
Question 3
यदि (if) A=$\begin{bmatrix}2&9\\4&3\end{bmatrix}$ तथा (and) B=$\begin{bmatrix}1&5\\7&2\end{bmatrix}$ AB-BA निकालें । (Find AB-BA)
Sol :
AB-BA=
$\begin{bmatrix}2&9\\4&3\end{bmatrix}\begin{bmatrix}1&5\\7&2\end{bmatrix}$-$\begin{bmatrix}1&5\\7&2\end{bmatrix}\begin{bmatrix}2&9\\4&3\end{bmatrix}$
=$\begin{bmatrix}2+63&10+18\\4+21&20+6\end{bmatrix}-\begin{bmatrix}2+28&9+15\\14+8&63+6\end{bmatrix}$
=$\begin{bmatrix}43&4\\3&-43\end{bmatrix}$
Question 4
(i) यदि (If) A=$\begin{bmatrix}cos\theta&sin\theta&\\sin\theta&cos\theta\end{bmatrix}$ , B=$\begin{bmatrix}cos\phi&sin\phi&\\sin\phi&cos\phi\end{bmatrix}$तो साबित करें कि (then show that) AB=BA
Sol :
L.H.S
AB=$\begin{bmatrix}cos\theta&sin\theta&\\sin\theta&cos\theta\end{bmatrix}\begin{bmatrix}cos\phi&sin\phi&\\sin\phi&cos\phi\end{bmatrix}$
=$\begin{bmatrix} cos\theta.cos\phi+sin\theta.sin\phi & cos\theta.sin\phi+sin\theta.cos\phi\\ sin\theta.cos\phi+cos\theta.sin\phi & sin\theta.sin\phi+cos\theta.cos\phi \end{bmatrix}$
=$\begin{bmatrix}cos(\theta-\phi)&sin(\theta+\phi)\\sin(\theta+\phi)&cos(\theta-\phi)\end{bmatrix}$
R.H.S
BA=$\begin{bmatrix}cos\phi&sin\phi&\\sin\phi&cos\phi\end{bmatrix}\begin{bmatrix}cos\theta&sin\theta&\\sin\theta&cos\theta\end{bmatrix}$
=$\begin{bmatrix}cos\theta.cos\phi+sin\theta.sin\phi&cos\phi.sin\theta+sin\phi.cos\theta\\sin\phi.cos\theta+cos\phi.sin\theta&sin\theta.sin\phi+cos\theta.cos\phi&\end{bmatrix}$
=$\begin{bmatrix}cos(\theta-\phi)&sin(\theta+\phi)\\sin(\theta+\phi)&cos(\theta-\phi)\end{bmatrix}$
∴AB=BA Proved
Hii
ReplyDeleteThanks for all sollution
ReplyDeletePura que nahi hai
ReplyDeleteThank you thank you soo much
ReplyDeleteNice Thank you
ReplyDeleteLajvab
ReplyDeleteYar
DeleteJabardast
Delete41 no.question ka solution kha hai
ReplyDeleteNice
ReplyDeleteExe ed
ReplyDelete