Processing math: 100%

KC Sinha Mathematics Solution Class 12 Chapter 5 आव्यूह ( Matrices ) Exercise 5.2 (Q8-Q14)

Exercise 5.2



Question 8
(i) यदि (If) A=\left[\begin{array}{cc}2 & 3 \\ -1 & 5\end{array}\right], B=\left[\begin{array}{cc}3 & -1 \\ 4 & 7\end{array}\right] तथा (and) c=\left[\begin{array}{cc}5 & -1 \\ 0 & 3\end{array}\right] दिखाएँ कि (show that) 
A(B+C)=AB+AC
Sol :
L.H.S
A(B+C)==\left[\begin{array}{cc}2 & 3 \\ -1 & 5\end{array}\right]\left(\left[\begin{array}{cc}3 & -1 \\ 4 & 7\end{array}\right]+\left(\begin{array}{cc}5 & -1 \\ 0 & 3\end{array}\right]\right)

=\left[\begin{array}{cc}2 & 3 \\ -1 & 5\end{array}\right]\left[\begin{array}{cc}8 & -2 \\ 4 & 10\end{array}\right]

=\left[\begin{array}{cc}11+12 & -4+30 \\ -8+20 & 2+50\end{array}\right]

=\left[\begin{array}{ll}28 & 26 \\ 12 & 52\end{array}\right]


R.H.S
AB+AC=\left[\begin{array}{cc}2 & 3 \\ -1 & 5\end{array}\right]\left[\begin{array}{cc}3 & -1 \\ 4 & 7\end{array}\right]+\left[\begin{array}{cc}2 & 3 \\ -1 & 5\end{array}\right]\left[\begin{array}{cc}5 & -1 \\ 0 & 3\end{array}\right]

=\left[\begin{array}{cc}6+12 & -2+21 \\ -3+20 & 1+35\end{array}\right]+\left[\begin{array}{cc}10+0 & -2+9 \\ -5+0 & 1+15\end{array}\right]

=\left[\begin{array}{ll}18 & 19 \\ 17 & 31\end{array}\right]+\left[\begin{array}{cc}10 & 7 \\ -5 & 16\end{array}\right]

=\left[\begin{array}{cc}28 & 26 \\ 12 & 52\end{array}\right]

∴A(B+C)=AB+AC

(ii) यदि (If) A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right] तथा (and) B=\left[\begin{array}{cc}1 & 4 \\ -1 & 1\end{array}\right] क्या (is)
(A+B)2=A2+2AB+B2
Sol :
L.H.S
(A+B)2=\left(\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]+\left[\begin{array}{cc}1 & 4 \\ -1 & 1\end{array}\right]\right)^{2}

=\left[\begin{array}{cc}3 & 3 \\ -2 & 3\end{array}\right]^{2}

=\left[\begin{array}{cc}3 & 3 \\ -2 & 3\end{array}\right]\left[\begin{array}{cc}3 & 3 \\ -2 & 3\end{array}\right]

=\left[\begin{array}{cc}9-6 & 9+7 \\ -6-6 & -6+9\end{array}\right]=\left[\begin{array}{cc}3 & 18 \\ -12 & 3\end{array}\right]


R.H.S
A2+2AB+B2

=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]+2\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]\left[\begin{array}{cc}1 & 4 \\ -1 & 1\end{array}\right]+\begin{bmatrix}1&4\\-1&1\end{bmatrix}\begin{bmatrix}1&4\\-1&1\end{bmatrix}

=\left[\begin{array}{cc}4+1 & -2-2 \\ -2-2 & 1+4\end{array}\right]+2\left[\begin{array}{ccc}2+1 & 8-1 \\ -1 -2 & -4+2\end{array}\right]+\left[\begin{array}{cc}1-4 & 4+4 \\ -1-1 & -4+1\end{array}\right]

=\left[\begin{array}{cc}5 & -4 \\ -4 & 5\end{array}\right]+\left[\begin{array}{cc}6 & 14 \\ -6 & -4\end{array}\right]+\left[\begin{array}{cc}-3 & 8 \\ -2 & -3\end{array}\right]

=\left[\begin{array}{rr}8 & 18 \\ -12 & -2\end{array}\right]

∴(A+B)2≠ A2+2AB+B2



Question 9
(i) यदि (If) A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right], B=\left[\begin{array}{ll}3 & 4 \\ 7 & 2\end{array}\right], C=\left[\begin{array}{ll}1 & 0 \\ 0 & 7\end{array}\right] तो सत्यापित करें कि (verify that)
(AB)C=A(BC)
Sol :
L.H.S
(AB)C=\left(\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]\left[\begin{array}{ll}3 & 4 \\ 7 & 2\end{array}\right]\right)\left[\begin{array}{ll}1 & 0 \\ 0 & 7\end{array}\right]

=\left[\begin{array}{ll}6+21 & 8+6 \\ 12+35 & 16+10\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 7\end{array}\right]

=\left[\begin{array}{ll}27 & 14 \\ 4 7 & 26\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 7\end{array}\right]

=\left[\begin{array}{cc}27+0 & 0+91 \\ 47+0 & 0+182\end{array}\right]

=\left[\begin{array}{ll}2 7&98 \\ 4 7 & 182\end{array}\right]

R.H.S
A(BC)==\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]\left(\left[\begin{array}{ll}3 & 4 \\ 7 & 2\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 7\end{array}\right]\right)

=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]\left[\begin{array}{ll}3+0 & 0+28 \\ 7+0 & 0+14\end{array}\right]

=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]\left[\begin{array}{lll}3 & 2 8 \\ 7 & 14\end{array}\right]

=\left[\begin{array}{ll}6+21 & 56+42 \\ 12+35 & 112+70\end{array}\right]

=\left[\begin{array}{ll}2 7&98 \\ 4 7 & 182\end{array}\right]

(AB)C=A(BC)



Question 10
(i) यदि (If) A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right] , साबित करें कि (show that) 
A^{2}=\left[\begin{array}{cc}\cos 2 \alpha & \sin 2 \alpha \\ -\sin 2 \alpha & \cos 2 \alpha\end{array}\right]
Sol :

A2=A.A==\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right]\left[\begin{array}{cc}cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]

=\left[\begin{array}{ll}\cos ^{2} \alpha-sin^{2}\alpha & \cos \alpha.sin\alpha+\sin \alpha \cos \alpha \\ -\sin \alpha \cos \alpha-\sin \alpha .cos\alpha & -\sin ^{2} \alpha+\cos ^{2} \alpha\end{array}\right]


(ii) यदि (If) A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \cdot B=\left[\begin{array}{lr}0 & -i \\ i & 0\end{array}\right] तथा (and) C=\begin{bmatrix}i&0\\0&-i\end{bmatrix} दिखाएँ कि (show that) A^2=B^2=-C^2=I_2 तथा (and) AB=-BA, AC=-CA तथा (and) BC=-CB
Sol :
A2=A.A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]

= \left[\begin{array}{cc}0+1 & 0+0 \\ 0+0 & 1+0\end{array}\right]

=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I_{2}

B2=B.B=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]

=\left[\begin{array}{cc}0-1^{2} & -0-0 \\ 0+0 & -i^{2}+0\end{array}\right]

-C2=C.C=-\left[\begin{array}{ll}i & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}i & 0 \\ 0 & -i\end{array}\right]

=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I_{2}

=-\left[\begin{array}{cc}i^{2}+0 & 0-0 \\ 0-0 & 0+i^{2}\end{array}\right]

=-\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]

=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I_{2}

\therefore A^{2}=B^{2}=-C^{2}=I_2

AB=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & -i \\ i & 0\end{array}\right]

=\left[\begin{array}{cc}0+i & -0+0 \\ 0+0 & -i+0\end{array}\right]

=\left[\begin{array}{cc}1 & 0 \\ 0 & -i\end{array}\right]

-BA=-\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]

=-\left[\begin{array}{cc}0-i & 0-0 \\ 0+0 & 1+0\end{array}\right]

=-\left[\begin{array}{cc}-i & 0\\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right]

\therefore A B=-B A


(iii) यदि (If) A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}0 & 5 & 7 \\ 0 & 0 & 6 \\ 0 & 0 & 0\end{array}\right] तथा (and) C=\left[\begin{array}{ccc}-1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5\end{array}\right] दिखाएँ कि (show that)
(i) A^{2}=1 (ii) C^{2}=C (iii) B^{4}=0
Sol :
(i)
A^{2}=A \cdot A= \left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]

=\left[\begin{array}{ccc}0+0+1 & 0+0+0 & 0+0+0 \\ 0+0+0 & 0+1+0 & 0+0+0 \\ 0+0+0 & 0+0+0 & 1+0+0\end{array}\right]

=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I

(ii)
c^{2}=c \cdot c =\left[\begin{array}{ccc}-1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5\end{array}\right]\left[\begin{array}{ccc}-1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5\end{array}\right]

=\left[\begin{array}{ccc}1+3-5 & -3-9+15 & -5-15+25 \\ -1-3+5 & 3+9-15 & 5+15-25 \\ 1+3-5 & -3-9+15 & -5-15+25\end{array}\right]

=\left[\begin{array}{ccc}-1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5\end{array}\right]=C

\therefore c^{2}=c


(iii) B^{2}=B \cdot B =\left[\begin{array}{ccc}0 & 5 & 7 \\ 0 & 0 & 6 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 5 & 7 \\ 0 & 0 & 6 \\ 0 & 0 & 0\end{array}\right]

=\left[\begin{array}{ccc}0+0+0 & 0+0+0 & 0+30+0 \\ 0+0+0 & 0+0+0 & 0+0+0 \\ 0+0+0 & 0+0+0 & 0+0+0\end{array}\right]

=\left[\begin{array}{lll}0 & 0 & 30 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]

B^{4}=B^{2} \cdot B^{2}

=\left[\begin{array}{ccc}0 & 0 & 30 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 0 & 30 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]

=\left[\begin{array}{ccc}0+0+0 & 0+0+0 & 0+0+0 \\ 0+0+0 & 0+0+0 & 0+0+0 \\ 0+0+0 & 0+0+0 & 0+0+0\end{array}\right]

=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]

B^{4}=0


Question 11

यदि (If) \mathrm{A}=\left[\begin{array}{rrr}1 & 2 & 3 \\ 2 & 0 & -2\end{array}\right], \mathrm{B}=\left[\begin{array}{rrr}1 & 1 & -1 \\ 2 & 0 & 3 \\ 3 & -1 & 2\end{array}\right] तथा (and) \mathrm{C}=\left[\begin{array}{rr}1 & 3 \\ 0 & 2 \\ -1 & 4\end{array}\right] तो  A(BC) निकालें। इससे या किसी अन्य विधि से (AB)C को लिखें। (then find A(BC) . Hence or otherwise, write down (AB) C)
Sol :







Question 12
दिखाएँ कि (show that) \left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{3}=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]
Sol :
\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{2}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]

=\left[\begin{array}{cc}1+0 & 1+1 \\ 0+0 & 0+1\end{array}\right]

=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]


\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{3}

=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{2} \cdot\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]

=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]

=\left[\begin{array}{cc}1+0 & 1+2 \\ 0+0 & 0+1\end{array}\right]

=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]


Question 13
यदि (if) A=\left[\begin{array}{cc}\cos 2 \theta & \sin 20 \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right], A^{2} निकालें (find) A2
Sol :
A2=A.A=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos \theta\end{array}\right]\left[\begin{array}{ccc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos \end{array}\right]

=\left[\begin{array}{ll}cos^{2} 2 \theta-\sin ^{2} 2 \theta & \cos 2 \theta sin 2 \theta+sin 2 \theta.cos2\theta \\ -sin2\theta. 2 \theta \cos 2 \theta-\sin 2 \theta \cos 2 \theta & -\sin ^{2} 2 \theta+\cos ^{2}(2\theta)\end{array}\right]

=\left[\begin{array}{cc}\cos 2(2 \theta) & \sin 2(2 \theta) \\ -\sin 2(2 \theta) & \cos 2(2 \theta)\end{array}\right]

=\left[\begin{array}{cc}\cos 4\theta & sin4\theta \\ -sin4\theta & cos4\theta\end{array}\right]


Question 14

यदि (If) \mathrm{A}=\left[\begin{array}{cc}0.8 & 0.6 \\ -0.6 & 8.0\end{array}\right] निकालें (find) \mathrm{A}^{3}.

Sol :






1 comment:

Contact Form

Name

Email *

Message *