Exercise 11.1
Question 1
x के सापेक्ष के फलन अर्थात् संयुक्त फलनों के अवकलन पर आधारित प्रश्नः
[Differentiate the following functions with respect to x](i) sin(ax+b)
Sol :
Let y= sin(ax+b)
Differentiating with respect to x
$\frac{d y}{d x}=\frac{d[\sin (a x+b)]}{d\left(a{x}+b\right)} \times \frac{d\left(a{x}+b\right)}{d{x}}$
= cos(ax+b)a
=acos(ax+b)
(ii) sin x2
Sol :
Let y=sin x2
Differentiating with respect to x
$\frac{d y}{dx}=\frac{d\left(\sin x^{2}\right)}{d\left(x^{2}\right)} \times \frac{d\left(x^{2}\right)}{dx}$
=cos x22x
=2x.cos x2
(iii) tan(5x+9)
Sol :
Let y=tan(5x+9)
Differentiating with respect to x
$\frac{d y}{d x}=\frac{d[\tan (5 x+1)]}{d(5 x+9)} \times \frac{d(5 x+9)}{d{x}}$
=sec2(5x+9)5
=5sec2(5x+9)
(iv) cos(sin x2)
Sol :
Let y=cos(sin x2)
Differentiating with respect to x
$\frac{d y}{dx}=\frac{\left.d [ \cos \left(\tan x^{2}\right)\right]}{d\left(\sin x^{2}\right)} \times \frac{d\left(\sin x^{2}\right)}{d\left(x^{2}\right)} \times \frac{d\left(x^{2}\right)}{dx}$
=-sin(sin x2) .cos x2.2x
=-2x.sin(sin x2) .cos x2
(v) sin3x
Sol :
Let y=sin3x
Differentiating with respect to x
$\frac{d y}{d x}=\frac{d\left(\sin ^{3} x\right)}{d(\sin x)}=\frac{d(\sin x)}{d x}$
=3.sin2x.cosx
(vi) $\sqrt{x^{2}+x+1}$
Sol :
Let y=$\sqrt{x^{2}+x+1}$
Differentiating with respect to x
$\frac{d y}{dx}=\frac{d(\sqrt{x^{2}+x+1})}{d\left(x^{2}+x+1\right)} \times \frac{d\left(x^{2}+x+1\right)}{dx}$
$=\frac{1}{2 \sqrt{x^{2}+x+1}} \times(2 x+1)$
$=\frac{2 x+1}{2 \sqrt{x^{2}+x+1}}$
Differentiate the following functions with respect to x
Question 2
tan(xn)Sol :
Let y=tan(xn)
Differentiating with respect to x
$\frac{d y}{d x}=\frac{d\left[\tan \left(x^{n}\right)\right]}{d\left(x^{n}\right)} \times \frac{d\left(x^{n}\right)}{d x}$
=sec2(xn).nxn-1
=nxn-1.sec2(xn)
cosec(cosec x)$\frac{d y}{d x}=\frac{d\left[\tan \left(x^{n}\right)\right]}{d\left(x^{n}\right)} \times \frac{d\left(x^{n}\right)}{d x}$
=sec2(xn).nxn-1
=nxn-1.sec2(xn)
Question 3
Sol :
Let y=cosec(cosec x)
Differentiating with respect to x
$\frac{d{y}}{dx}=\frac{d[\operatorname{cosec}(\operatorname{cosec} x)]}{d[\operatorname{cosec} x)} \times \frac{d(\cos x)}{dx}$
=-cosec(cosec x).cot(cosec x).(-coec x . cot x)
=cosec(cosec x).cot(cosec x).cosec x. cot x
tan(x2+3)
Sol :
Let y=tan(x2+3)
Differentiating with respect to x
$\frac{d y}{d x}=\frac{d\left[\tan \left(x^{2}+3\right)\right]}{d\left(x^{2}+3\right)} \times \frac{d( x^{2}+3)}{d x}$
=sec2(x2+3).2x
=2x.sec2(x2+3)
$\frac{d{y}}{dx}=\frac{d[\operatorname{cosec}(\operatorname{cosec} x)]}{d[\operatorname{cosec} x)} \times \frac{d(\cos x)}{dx}$
=-cosec(cosec x).cot(cosec x).(-coec x . cot x)
=cosec(cosec x).cot(cosec x).cosec x. cot x
Question 4
Sol :
Let y=tan(x2+3)
$\frac{d y}{d x}=\frac{d\left[\tan \left(x^{2}+3\right)\right]}{d\left(x^{2}+3\right)} \times \frac{d( x^{2}+3)}{d x}$
=sec2(x2+3).2x
=2x.sec2(x2+3)
Very helpful...thanks making this app
ReplyDeleteOsm👌👌👌👌👌
ReplyDelete