Exercise 11.1
Question 17
Sol :
Let y=\sqrt{\tan (\tan x)}
Differentiating with respect to x
\frac{d y}{dx}=\frac{d(\sqrt{\tan (\tan x)})}{d(\tan (\tan x))}=\frac{d(\tan (\tan x))}{d(\tan x)} \frac{d(\tan x)}{dx}
=\frac{1}{2 \sqrt{\tan (\tan x)}} \times \sec^{2}(\tan x) \cdot \sec ^{2} x
=\frac{\sec ^{2} x \cdot \sec ^{2}(\tan x)}{2 \sqrt{\tan (\tan x)}}
\frac{d y}{dx}=\frac{d(\sqrt{\tan (\tan x)})}{d(\tan (\tan x))}=\frac{d(\tan (\tan x))}{d(\tan x)} \frac{d(\tan x)}{dx}
=\frac{1}{2 \sqrt{\tan (\tan x)}} \times \sec^{2}(\tan x) \cdot \sec ^{2} x
=\frac{\sec ^{2} x \cdot \sec ^{2}(\tan x)}{2 \sqrt{\tan (\tan x)}}
Question 18
Sol :
Let y=\sqrt{1+\sin x}
\frac{d{y}}{dx}=\frac{d(\sqrt{1+\sin x})}{d(1+\sin x)} \times \frac{d\left(1+\sin x\right)}{d x}
=\frac{1}{2 \sqrt{1+\sin x}} \times \cos x
=\frac{\cos x}{2 \sqrt{1+\sin x}}
Question 19
Sol :
Let y=\sqrt{\tan \left(1+x^{2}\right)}
Differentiating with respect to x
\frac{d y}{dx}=\frac{d(\sqrt{\tan \left(1+x^{2}\right)})}{d\left(\tan \left(1+x^{2}\right)\right)} \times \left.\frac{\left.d(\tan \left(1+x^{2}\right)\right)}{d\left(1+x^{2}\right)} \times \frac{d\left(1+x^{2}\right)}{dx}\right.
=\frac{1}{2 \sqrt{\tan \left(1+x^{2}\right)}} \times \sec ^{2}\left(1+x^{2}\right) \cdot 2 x
=\frac{x \sec ^{2}\left(1+x^{2}\right)}{\sqrt{\tan \left(1+x^{2}\right)}}
\frac{d y}{dx}=\frac{d(\sqrt{\tan \left(1+x^{2}\right)})}{d\left(\tan \left(1+x^{2}\right)\right)} \times \left.\frac{\left.d(\tan \left(1+x^{2}\right)\right)}{d\left(1+x^{2}\right)} \times \frac{d\left(1+x^{2}\right)}{dx}\right.
=\frac{1}{2 \sqrt{\tan \left(1+x^{2}\right)}} \times \sec ^{2}\left(1+x^{2}\right) \cdot 2 x
=\frac{x \sec ^{2}\left(1+x^{2}\right)}{\sqrt{\tan \left(1+x^{2}\right)}}
Question 20
Sol :
Let y=\cot \sqrt{\cos \sqrt{x}}
Differentiating with respect to x
\frac{d y}{dx}=\frac{d[\cot\sqrt{\cos \sqrt{x}})}{d[\sqrt{\cos \sqrt{x}}]} \times \frac{d \sqrt{\cos \sqrt{x}}}{d(\cos \sqrt{x})} \times \frac{d( \cos \sqrt{x})}{d(\sqrt{x})}\times\frac{d(\sqrt{x})}{dx}
=-\operatorname{cosec}^{2} \sqrt{\cos \sqrt{x}}\times \frac{1}{2 \sqrt{\cos \sqrt{x}}} \times (-\sin \sqrt{x}) \times \frac{1}{2 \sqrt{x}}
=\frac{\sin \sqrt{x} \operatorname{cosec}^{2} \sqrt{\cos \sqrt{x}}}{4 \sqrt{x} \sqrt{\cos \sqrt{x}}}
\frac{d y}{dx}=\frac{d[\cot\sqrt{\cos \sqrt{x}})}{d[\sqrt{\cos \sqrt{x}}]} \times \frac{d \sqrt{\cos \sqrt{x}}}{d(\cos \sqrt{x})} \times \frac{d( \cos \sqrt{x})}{d(\sqrt{x})}\times\frac{d(\sqrt{x})}{dx}
=-\operatorname{cosec}^{2} \sqrt{\cos \sqrt{x}}\times \frac{1}{2 \sqrt{\cos \sqrt{x}}} \times (-\sin \sqrt{x}) \times \frac{1}{2 \sqrt{x}}
=\frac{\sin \sqrt{x} \operatorname{cosec}^{2} \sqrt{\cos \sqrt{x}}}{4 \sqrt{x} \sqrt{\cos \sqrt{x}}}
No comments:
Post a Comment