Processing math: 100%

KC Sinha Mathematics Solution Class 12 Chapter 11 अवकलन (Differentiation) Exercise 11.1 (Q17-Q20)












Exercise 11.1

Question 17

\sqrt{\tan (\tan x)}
Sol :
Let y=\sqrt{\tan (\tan x)}

Differentiating with respect to x

\frac{d y}{dx}=\frac{d(\sqrt{\tan (\tan x)})}{d(\tan (\tan x))}=\frac{d(\tan (\tan x))}{d(\tan x)} \frac{d(\tan x)}{dx}

=\frac{1}{2 \sqrt{\tan (\tan x)}} \times \sec^{2}(\tan x) \cdot \sec ^{2} x

=\frac{\sec ^{2} x \cdot \sec ^{2}(\tan x)}{2 \sqrt{\tan (\tan x)}}


Question 18

\sqrt{1+\sin x}
Sol :
Let y=\sqrt{1+\sin x}

Differentiating with respect to x

\frac{d{y}}{dx}=\frac{d(\sqrt{1+\sin x})}{d(1+\sin x)} \times \frac{d\left(1+\sin x\right)}{d x}

=\frac{1}{2 \sqrt{1+\sin x}} \times \cos x

=\frac{\cos x}{2 \sqrt{1+\sin x}}


Question 19

\sqrt{\tan \left(1+x^{2}\right)}
Sol :
Let y=\sqrt{\tan \left(1+x^{2}\right)}

Differentiating with respect to x

\frac{d y}{dx}=\frac{d(\sqrt{\tan \left(1+x^{2}\right)})}{d\left(\tan \left(1+x^{2}\right)\right)} \times \left.\frac{\left.d(\tan \left(1+x^{2}\right)\right)}{d\left(1+x^{2}\right)} \times \frac{d\left(1+x^{2}\right)}{dx}\right.

=\frac{1}{2 \sqrt{\tan \left(1+x^{2}\right)}} \times \sec ^{2}\left(1+x^{2}\right) \cdot 2 x

=\frac{x \sec ^{2}\left(1+x^{2}\right)}{\sqrt{\tan \left(1+x^{2}\right)}}


Question 20

\cot \sqrt{\cos \sqrt{x}}
Sol :
Let y=\cot \sqrt{\cos \sqrt{x}}

Differentiating with respect to x

\frac{d y}{dx}=\frac{d[\cot\sqrt{\cos \sqrt{x}})}{d[\sqrt{\cos \sqrt{x}}]} \times \frac{d \sqrt{\cos \sqrt{x}}}{d(\cos \sqrt{x})} \times \frac{d( \cos \sqrt{x})}{d(\sqrt{x})}\times\frac{d(\sqrt{x})}{dx}

=-\operatorname{cosec}^{2} \sqrt{\cos \sqrt{x}}\times \frac{1}{2 \sqrt{\cos \sqrt{x}}} \times (-\sin \sqrt{x}) \times \frac{1}{2 \sqrt{x}}

=\frac{\sin \sqrt{x} \operatorname{cosec}^{2} \sqrt{\cos \sqrt{x}}}{4 \sqrt{x} \sqrt{\cos \sqrt{x}}}


No comments:

Post a Comment

Contact Form

Name

Email *

Message *