Exercise 11.1
Question 5
tan x0Sol :
Let y=tan x0
$=\tan x \times \frac{\pi}{180}$
$y=\tan \frac{\pi x}{180}$
Differentiating with respect to x
$\frac{d y}{d x}=\frac{d\left(\tan \frac{\pi x}{180}\right)}{d\left(\frac{\pi x}{180}\right)} \times \frac{d\left(\frac{\pi x}{180}\right)}{d x}$
$=\sec ^{2} \frac{\pi x}{120} \times \frac{\pi}{180}$
$=\frac{\pi}{180} \cdot \sec ^{2} x^{0}$
Question 6
Sol :
Let y=$\left(3 x^{2}+6 x+5\right)^{\frac{7}{2}}$
Differentiating with respect to x
$\frac{d y}{dx}=\frac{d\left(3 x^{2}+6 x+5\right)^{\frac{7}{2}}}{d\left(3 x^{2}+6 x+5\right)} \times \frac{d\left(3 x^{2}+6 x+5\right)}{dx}$
$=\frac{7}{2}\left(3 x^{2}+6 x+5\right)^{5 / 2} \cdot(6 x+6)$
$=21(x+1) \cdot\left(3 x^{2}+6 x+5\right)^{5 / 2}$
$\frac{d y}{dx}=\frac{d\left(3 x^{2}+6 x+5\right)^{\frac{7}{2}}}{d\left(3 x^{2}+6 x+5\right)} \times \frac{d\left(3 x^{2}+6 x+5\right)}{dx}$
$=\frac{7}{2}\left(3 x^{2}+6 x+5\right)^{5 / 2} \cdot(6 x+6)$
$=21(x+1) \cdot\left(3 x^{2}+6 x+5\right)^{5 / 2}$
Question 7
Sol :
Let y=$\sqrt{5+2 x-4 x^{5}}$
Differentiating with respect to x
$\frac{dy}{dx}=\frac{d(\sqrt{5+2 x-4x^5} )}{d(5+2x-4x^5)} \times d\left(\frac{5+2x-4 x^{5}}{dx}\right)$
$=\frac{1}{2 \sqrt{5+2 x-4 x^{5}}} \times\left(2-20 x^{4}\right)$
$=\frac{2\left(1-10 x^{4}\right)}{2 \sqrt{5+2 x-4 x^{5}}}$
$=\frac{1-10 x^{4}}{\sqrt{5+2 x-4 x^5}}$
sin(cos x3)
$\frac{dy}{dx}=\frac{d(\sqrt{5+2 x-4x^5} )}{d(5+2x-4x^5)} \times d\left(\frac{5+2x-4 x^{5}}{dx}\right)$
$=\frac{1}{2 \sqrt{5+2 x-4 x^{5}}} \times\left(2-20 x^{4}\right)$
$=\frac{2\left(1-10 x^{4}\right)}{2 \sqrt{5+2 x-4 x^{5}}}$
$=\frac{1-10 x^{4}}{\sqrt{5+2 x-4 x^5}}$
Question 8
Sol :
Let y=sin(cos x3)
Let y=sin(cos x3)
Differentiating with respect to x
$\frac{d{y}}{dx}=\frac{d\left[\sin \left(\cos x^{3}\right)\right]}{d\left(\cos x^{3}\right)} \times \frac{d\left(\cos x^{3}\right)}{d\left(x^{3}\right)} \times \frac{d\left(x^{2}\right)}{d x}$
=cos(cos x3).(-sin x3).3x2
=-3x2sinx3.cos(cosx3)
Nice explanation 👍
ReplyDelete