Processing math: 100%

KC Sinha Mathematics Solution Class 12 Chapter 11 अवकलन (Differentiation) Exercise 11.1 (Q5-Q8)












Exercise 11.1

Question 5

tan x0
Sol :
Let y=tan x0

=\tan x \times \frac{\pi}{180}

y=\tan \frac{\pi x}{180}

Differentiating with respect to x

\frac{d y}{d x}=\frac{d\left(\tan \frac{\pi x}{180}\right)}{d\left(\frac{\pi x}{180}\right)} \times \frac{d\left(\frac{\pi x}{180}\right)}{d x}

=\sec ^{2} \frac{\pi x}{120} \times \frac{\pi}{180}

=\frac{\pi}{180} \cdot \sec ^{2} x^{0}


Question 6

\left(3 x^{2}+6 x+5\right)^{\frac{7}{2}}
Sol :
Let y=\left(3 x^{2}+6 x+5\right)^{\frac{7}{2}}

Differentiating with respect to x

\frac{d y}{dx}=\frac{d\left(3 x^{2}+6 x+5\right)^{\frac{7}{2}}}{d\left(3 x^{2}+6 x+5\right)} \times \frac{d\left(3 x^{2}+6 x+5\right)}{dx}

=\frac{7}{2}\left(3 x^{2}+6 x+5\right)^{5 / 2} \cdot(6 x+6)

=21(x+1) \cdot\left(3 x^{2}+6 x+5\right)^{5 / 2}


Question 7

\sqrt{5+2 x-4 x^{5}}
Sol :
Let y=\sqrt{5+2 x-4 x^{5}}

Differentiating with respect to x

\frac{dy}{dx}=\frac{d(\sqrt{5+2 x-4x^5} )}{d(5+2x-4x^5)} \times d\left(\frac{5+2x-4 x^{5}}{dx}\right)

=\frac{1}{2 \sqrt{5+2 x-4 x^{5}}} \times\left(2-20 x^{4}\right)

=\frac{2\left(1-10 x^{4}\right)}{2 \sqrt{5+2 x-4 x^{5}}}

=\frac{1-10 x^{4}}{\sqrt{5+2 x-4 x^5}}

Question 8

sin(cos x3)
Sol :
Let y=sin(cos x3)

Differentiating with respect to x

\frac{d{y}}{dx}=\frac{d\left[\sin \left(\cos x^{3}\right)\right]}{d\left(\cos x^{3}\right)} \times \frac{d\left(\cos x^{3}\right)}{d\left(x^{3}\right)} \times \frac{d\left(x^{2}\right)}{d x}

=cos(cos x3).(-sin x3).3x2

=-3x2sinx3.cos(cosx3)



1 comment:

Contact Form

Name

Email *

Message *