Processing math: 0%

KC Sinha Mathematics Solution Class 12 Chapter 11 अवकलन (Differentiation) Exercise 11.1 (Q21-Q24)












Exercise 11.1

Question 21

\sin \sqrt{\sin \sqrt{x}}
Sol :
Let y=\sin \sqrt{\sin \sqrt{x}}

Differentiating with respect to x

\frac{d y}{d x}=\frac{d[\sin \sqrt{\sin \sqrt{x}}]}{d(\sqrt{\sin \sqrt{x}})} \times \frac{d(\sqrt{\sin \sqrt{x}})}{d(\sin \sqrt{x})} \times \frac{d(\sin \sqrt{x})}{d(\sqrt{x})}\times \frac{d(\sqrt x)}{dx}

=\cos \sqrt{\sin \sqrt{x}} \cdot \frac{1}{2 \sqrt{\sin \sqrt{x}}} \times \cos \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}

=\frac{\cos \sqrt{\sin \sqrt{x}} \cdot \cos \sqrt{x}}{4 \sqrt{x} \sqrt{\sin \sqrt{x}}}


Question 22

\sin \sqrt{\cos \sqrt{a x}}
Sol :
Let y=\sin \sqrt{\cos \sqrt{a x}}

Differentiating with respect to x

\frac{d y}{d}=\frac{d(\sin \sqrt{\cos \sqrt{a x}})}{d(\sqrt{\cos \sqrt{a x})}} \times \frac{d(\sqrt{\cos \sqrt{a{x}}})}{d(\cos \sqrt{a{x}})}\times \frac{d(\cos \sqrt{a{x}}}{d(\sqrt{a{x}})} \times \frac{d (\sqrt{a{x})}}{dx}\times \frac{d(ax)}{dx}

=\cos \sqrt{\cos \sqrt{a x}}\times \frac{1}{2 \sqrt{\cos \sqrt{4 x}}} \times(-\sin \sqrt{a x}) \times \frac{1}{2 \sqrt{ax}}

=-\frac{1}{4} \times\frac{a}{\sqrt{a} \sqrt{x}} \cdot \frac{\sin \sqrt{a x} \cos \sqrt{\cos \sqrt{a x}}}{\sqrt{\cos \sqrt{ax}}}

=\frac{-1}{4} \sqrt{\frac{a}{x}} \cdot \frac{\sin \sqrt{a} x}{\sqrt{\cos \sqrt{a x}}} \times \cos \sqrt{\cos \sqrt{ax}}


Question 23

\sqrt{\sin (\sin \sqrt{x})}
Sol :
Let y=\sqrt{\sin (\sin \sqrt{x})}

Differentiating with respect to x

\frac{d y}{d x}=\frac{d(\sqrt{\sin (\sqrt x)})}{d(\sin (\sin \sqrt{x}))} \cdot \frac{d(\sin (\sin \sqrt{x}))}{d(\sin \sqrt{x})} \times \frac{d(\sin \sqrt{x})}{d(\sqrt{2})}\times\frac{d(\sqrt{x})}{d x}

=\frac{1}{2 \sqrt{\sin (\sin \sqrt{2})}} \cdot \cos (\sin \sqrt{2})+\cos \sqrt{x} \times \frac{1}{2 \sqrt{x}}

=\frac{\cos \sqrt{x} \cdot \cos (\sin\sqrt{x})}{4 \sqrt{x} \sqrt{\sin (\sin \sqrt{x})}}

\frac{d{y}}{d x}=\frac{d(\cos (\tan \sqrt{x+1}))}{d(\tan \sqrt{x+1})} \times d\left(\frac{\tan \sqrt{x+1}}{d(\sqrt{x+1})}\right) \times \frac{d(\sqrt{x+1})}{d(x+1)}\times \frac{d(x+1)}{dx}

\frac{d y}{d t}=-\sin (\tan \sqrt{x+1}) \cdot \sec ^{2} \sqrt{x+1} \times \frac{1}{2 \sqrt{x+1}}\times 1

=\frac{-\sec ^{2} \sqrt{x+1}. \sin (\tan \sqrt{x+1})}{2 \sqrt{x+1}}

Question 24

\cos (\tan \sqrt{x+1})
Sol:
Let y=\cos (\tan \sqrt{x+1})

Differentiating with respect to x



No comments:

Post a Comment

Contact Form

Name

Email *

Message *