KC Sinha Mathematics Solution Class 12 Chapter 11 अवकलन (Differentiation) Exercise 11.4 (Q7-Q9)

Exercise 11.4










Question 7

यदि (If) x=ylog (xy) दिखाएँ कि (show that) $\frac{d y}{d x}=\frac{y(x-y)}{x(x+y)}$
Sol :
x=ylog (xy)

x=y[logx+logy]

$\log x+\log y=\frac{x}{y}$

Differentiating w.r.t.x

$1=\frac{dy}{dx}\left[\log x+\log y\right]+y \cdot\left[\frac{1}{x}+\frac{1}{y} \cdot \frac{d y}{d x}\right]$

$1=\frac{x}{y} \frac{d y}{d x}+\frac{y}{x}+\frac{d y}{dx}$

$1-\frac{y}{x}=\left(\frac{x}{y}+1\right) \frac{d y}{dx}$

$\frac{x-y}{x}=\left(\frac{x+y}{y}\right) \frac{d y}{d x}$

$\frac{dy}{dx}=\frac{y(x-y)}{x(x+y)}$


Question 8

$y=\sqrt{\log x+\sqrt{\log x+\sqrt{\log x+\text{to }\infty}}}$ सिद्ध करें कि ( prove that ) $\frac{d y}{d x}=\frac{1}{x(2 y-1)}$
Sol :
$y=\sqrt{\log x+\sqrt{\log x+\sqrt{\log x+\text{to }\infty}}}$

$y=\sqrt{\log x+y}$

Squaring both sides

$y^{2}=\log x+y$

Differentiating w.r.t.x

$2 y \cdot \frac{d y}{d x}=\frac{1}{x}+\frac{d y}{d x}$

$2 y \frac{d y}{d x}-\frac{dy}{dx}=\frac{1}{x}$

$(2 y-1) \frac{d y}{d x}=\frac{1}{x}$

$\frac{dy}{dx}=\frac{1}{x(2 y-1)}$


Question 9

$\frac{d y}{d x}$ निकालें यदि 
[Find $\frac{d y}{d x}$ if]

(i) $y=x^{\frac{1}{x}}$
Sol :
Taking log both sides

$\log y=\log x^{\frac{1}{x}}$

$\log y=\frac{1}{x} \cdot \log x$

Differentiating w.r.t.x

$\frac{1}{y} \times \frac{dy}{dx}=\frac{-1}{x^{2}} \log {x}+\frac{1}{x} \times \frac{1}{x}$

$\frac{d y}{d x}=y\left[\frac{1}{x^{2}}-\frac{1}{x^{2}} \log x\right]$

$=\frac{x^{\frac{1}{x}}}{x^{2}}\left[1-\log x\right]$


(ii) y=xy
Sol :
Taking log both sides

log y=log xy

log y=y.log x

Differentiating w.r.t.x

$\frac{1}{y} \cdot \frac{d y}{d x}=\frac{d y}{d x} \cdot \log x+y \cdot \frac{1}{x}$

$\frac{1}{y} \cdot \frac{d y}{d x}-\log x \frac{d y}{d x}=\frac{y}{x}$

$\left(\frac{1}{y}-\log x\right) \frac{d y}{d x}=\frac{y}{x}$

$\left(\frac{1-y \log x}{y}\right) \frac{d y}{d x}=\frac{y}{x}$

$\frac{d y}{d x}=\frac{y^{2}}{x(1-y \log x)}$


(iii) y=xlog x
Sol :
Taking log both sides

log y=log xlog x

log y=log x.log x

log y=(log x)2

Differentiating w.r.t.x

$\frac{d y}{d x}=y \cdot 2 \frac{(\log x)}{x}$

$=x^{\log x} \cdot \frac{2\left(\log x\right)}{x}$


(iv) $y=x^{x+\frac{1}{x}}$
Sol :
Taking log both sides

$\log {y}=\log {x}\left(x+\frac{1}{x}\right)$

$\log {y}=\left(x+\frac{1}{x}\right) \cdot \log x$

Differentiating w.r.t.x

$\frac{1}{y}\times \frac{d y}{d x}=\left(1-\frac{1}{x^{2}}\right) \log x+\left(x+\frac{1}{x}\right) \cdot \frac{1}{x}$

$\frac{d y}{dx}=y\left[1+\frac{1}{x^{2}}+\left(1-\frac{1}{x^{2}}\right) \log x\right]$

$=x^{x+\frac{1}{x}}\left[1+\frac{1}{x^{2}}+\left(1-\frac{1}{x^{2}}\right) \log {x}\right]$


(v) $y=x^{\cos ^{-1} x}$
Sol :
$y=x^{\cos ^{-1} x}$

Taking log both sides

$\log {y}=\log x^{\cos^{-1}x}$

$\log y=\cos ^{-1} x \cdot \log x$

Differentiating w.r.t.x

$\frac{1}{y}. \frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}} \log x+\cos^{-1} x\times\frac{1}{x}$

$\frac{d y}{dx}=y\left[\frac{1}{x} \cos ^{-1} x-\frac{1}{\sqrt{1-x^{2}}} \log x\right]$

$=x \cos^{-1} x\left[\frac{1}{x} \cos ^{-1} x-\frac{1}{\sqrt{1-x^{2}}} \log x\right]$


No comments:

Post a Comment

Contact Form

Name

Email *

Message *