Exercise 11.4
Question 7
Sol :
x=ylog (xy)
x=y[logx+logy]
\log x+\log y=\frac{x}{y}
Differentiating w.r.t.x
1=\frac{dy}{dx}\left[\log x+\log y\right]+y \cdot\left[\frac{1}{x}+\frac{1}{y} \cdot \frac{d y}{d x}\right]
1=\frac{x}{y} \frac{d y}{d x}+\frac{y}{x}+\frac{d y}{dx}
1-\frac{y}{x}=\left(\frac{x}{y}+1\right) \frac{d y}{dx}
\frac{x-y}{x}=\left(\frac{x+y}{y}\right) \frac{d y}{d x}
\frac{dy}{dx}=\frac{y(x-y)}{x(x+y)}
Question 8
Sol :
y=\sqrt{\log x+\sqrt{\log x+\sqrt{\log x+\text{to }\infty}}}
y=\sqrt{\log x+y}
Squaring both sides
y^{2}=\log x+y
Differentiating w.r.t.x
2 y \cdot \frac{d y}{d x}=\frac{1}{x}+\frac{d y}{d x}
2 y \frac{d y}{d x}-\frac{dy}{dx}=\frac{1}{x}
(2 y-1) \frac{d y}{d x}=\frac{1}{x}
\frac{dy}{dx}=\frac{1}{x(2 y-1)}
Question 9
\frac{d y}{d x} निकालें यदि
[Find \frac{d y}{d x} if]
No comments:
Post a Comment