Exercise 11.4
Question 13
Sol :
(x-y)^{m+n}=x^{m} y^{n}
Taking log both sides
\log (x-y)^{m+n}=\log x^{m} \cdot y^{n}
(m+n) \cdot \log (x-y)=\log x^{m}+\log y^{n}
(m+n) \log (x-y)=m \cdot \log x+n \cdot \log y
Differentiating w.r.t.x
(m+n) \cdot \frac{1}{x-y} \times\left[1-\frac{dy}{dx}\right]=m \times \frac{1}{x}+n \times \frac{1}{y} \times \frac{dy}{d x}
\frac{m+n}{x-y}-\frac{m+n}{x-y} \frac{dy}{dx}=\frac{m}{x}+\frac{n}{y} \frac{d y}{d x}
\frac{m+n}{x-y}-\frac{m}{x}=\left(\frac{m+n}{x-y}+\frac{n}{y}\right) \frac{dy}{d x}
\frac{m x+n x-m x+m y}{(x-y) x}=\left(\frac{m y+n y+n x-ny}{(x-y) \cdot y}\right) \frac{dy}{dx}
\frac{n x+n y}{x}=\left(\frac{n x+m y}{y}\right) \frac{d y}{d x}
Question 14
Sol :
x=e^{\frac{x}{y}}
Taking log both sides
\log x=\log e^{\frac{x}{y}}
\log x=\frac{x}{y} \cdot \log e
\log x=\frac{x}{y}
y.log x= x
Differentiating w.r.t.x
\frac{d y}{d x} \cdot \log x+y \cdot \frac{1}{x}=1
\log {x} \frac{d y}{d x}=1-\frac{y}{x}
\log x \frac{dy}{dx}=\frac{x-y}{x}
\frac{d y}{dx}=\frac{x-y}{x \log x}
(ii) यदि (If) x y=e^{x-y} सिद्ध करें कि (prove that) \frac{d y}{d x}=\frac{y}{x}\left(\frac{x-1}{y+1}\right)
Sol :
x y=e^{x \cdot y}
Taking log both sides
\log x \cdot y=\log e^{x-y}
Differentiating w.r.t.x
\frac{1}{x}+\frac{1}{y} \times \frac{d y}{d x}=1-\frac{dy}{d x}
\frac{1}{y} \frac{d y}{d x}+\frac{d y}{dx}=1-\frac{1}{x}
\left(\frac{1}{y}+1\right) \frac{d y}{d x}=1-\frac{1}{x}
\left(\frac{1+y}{y}\right) \frac{d y}{dx}=\frac{x-1}{x}
\frac{d y}{dx}=\frac{y(x-1)}{x(y+1)}
Question 15
Sol :
y=(\cos x)^{(\cos x)^{(\cos x)}\dots \text{to }\infty }
y=(\cos x)^{y}
Taking log both sides
\log y=\log (\cos x)^{y}
log y=y.log(cos x)
Differentiating w.r.t.x
\frac{1}{y} \cdot \frac{d y}{d x}=\frac{d y}{dx} \cdot \log (\cos x)+y \cdot \frac{1}{\cos x} x(-\sin x)
\left[\frac{1}{y}-\log (\cos x)\right] \frac{d y}{d x}=-y \tan x
\left[\frac{1-y \log(\cos x)}{y}\right] \frac{d y}{d x}=-y \tan x
\frac{d y}{dx}=\frac{-y^{2} \tan x}{1-y \log (\cos x)}
No comments:
Post a Comment