Processing math: 100%

KC Sinha Mathematics Solution Class 12 Chapter 11 अवकलन (Differentiation) Exercise 11.4 (Q13-Q15)

Exercise 11.4










Question 13

यदि (If) (x-y)m+n=xm.yn  दिखाएँ कि (show that) \frac{d y}{d x}=\frac{y}{x}
Sol :
(x-y)^{m+n}=x^{m} y^{n}

Taking log both sides

\log (x-y)^{m+n}=\log x^{m} \cdot y^{n}

(m+n) \cdot \log (x-y)=\log x^{m}+\log y^{n}

(m+n) \log (x-y)=m \cdot \log x+n \cdot \log y

Differentiating w.r.t.x

(m+n) \cdot \frac{1}{x-y} \times\left[1-\frac{dy}{dx}\right]=m \times \frac{1}{x}+n \times \frac{1}{y} \times \frac{dy}{d x}

\frac{m+n}{x-y}-\frac{m+n}{x-y} \frac{dy}{dx}=\frac{m}{x}+\frac{n}{y} \frac{d y}{d x}

\frac{m+n}{x-y}-\frac{m}{x}=\left(\frac{m+n}{x-y}+\frac{n}{y}\right) \frac{dy}{d x}

\frac{m x+n x-m x+m y}{(x-y) x}=\left(\frac{m y+n y+n x-ny}{(x-y) \cdot y}\right) \frac{dy}{dx}

\frac{n x+n y}{x}=\left(\frac{n x+m y}{y}\right) \frac{d y}{d x}


Question 14

यदि (If) x=e^{\frac{x}{y}} सिद्ध करें कि (prove that) \frac{d y}{d x}=\frac{x-y}{x \log x}
Sol :
x=e^{\frac{x}{y}}

Taking log both sides

\log x=\log e^{\frac{x}{y}}

\log x=\frac{x}{y} \cdot \log e

\log x=\frac{x}{y}

y.log x= x

Differentiating w.r.t.x

\frac{d y}{d x} \cdot \log x+y \cdot \frac{1}{x}=1

\log {x} \frac{d y}{d x}=1-\frac{y}{x}

\log x \frac{dy}{dx}=\frac{x-y}{x}

\frac{d y}{dx}=\frac{x-y}{x \log x}


(ii) यदि (If) x y=e^{x-y} सिद्ध करें कि (prove that) \frac{d y}{d x}=\frac{y}{x}\left(\frac{x-1}{y+1}\right)
Sol :
x y=e^{x \cdot y}

Taking log both sides

\log x \cdot y=\log e^{x-y}

Differentiating w.r.t.x

\frac{1}{x}+\frac{1}{y} \times \frac{d y}{d x}=1-\frac{dy}{d x}

\frac{1}{y} \frac{d y}{d x}+\frac{d y}{dx}=1-\frac{1}{x}

\left(\frac{1}{y}+1\right) \frac{d y}{d x}=1-\frac{1}{x}

\left(\frac{1+y}{y}\right) \frac{d y}{dx}=\frac{x-1}{x}

\frac{d y}{dx}=\frac{y(x-1)}{x(y+1)}


Question 15

यदि (If) y=(\cos x)^{(\cos x)^{(\cos x)}\dots \text{to }\infty } सिद्ध करें कि (prove that) \frac{d y}{d x}=\frac{-y^{2} \tan x}{1-y \log \cos x}
Sol :
y=(\cos x)^{(\cos x)^{(\cos x)}\dots \text{to }\infty }

y=(\cos x)^{y}

Taking log both sides

\log y=\log (\cos x)^{y}

log y=y.log(cos x)

Differentiating w.r.t.x

\frac{1}{y} \cdot \frac{d y}{d x}=\frac{d y}{dx} \cdot \log (\cos x)+y \cdot \frac{1}{\cos x} x(-\sin x)

\left[\frac{1}{y}-\log (\cos x)\right] \frac{d y}{d x}=-y \tan x

\left[\frac{1-y \log(\cos x)}{y}\right] \frac{d y}{d x}=-y \tan x

\frac{d y}{dx}=\frac{-y^{2} \tan x}{1-y \log (\cos x)}



No comments:

Post a Comment

Contact Form

Name

Email *

Message *