Exercise 11.4
Question 13
Sol :
$(x-y)^{m+n}=x^{m} y^{n}$
Taking log both sides
$\log (x-y)^{m+n}=\log x^{m} \cdot y^{n}$
$(m+n) \cdot \log (x-y)=\log x^{m}+\log y^{n}$
$(m+n) \log (x-y)=m \cdot \log x+n \cdot \log y$
Differentiating w.r.t.x
$(m+n) \cdot \frac{1}{x-y} \times\left[1-\frac{dy}{dx}\right]=m \times \frac{1}{x}+n \times \frac{1}{y} \times \frac{dy}{d x}$
$\frac{m+n}{x-y}-\frac{m+n}{x-y} \frac{dy}{dx}=\frac{m}{x}+\frac{n}{y} \frac{d y}{d x}$
$\frac{m+n}{x-y}-\frac{m}{x}=\left(\frac{m+n}{x-y}+\frac{n}{y}\right) \frac{dy}{d x}$
$\frac{m x+n x-m x+m y}{(x-y) x}=\left(\frac{m y+n y+n x-ny}{(x-y) \cdot y}\right) \frac{dy}{dx}$
$\frac{n x+n y}{x}=\left(\frac{n x+m y}{y}\right) \frac{d y}{d x}$
Question 14
Sol :
$x=e^{\frac{x}{y}}$
Taking log both sides
$\log x=\log e^{\frac{x}{y}}$
$\log x=\frac{x}{y} \cdot \log e$
$\log x=\frac{x}{y}$
y.log x= x
Differentiating w.r.t.x
$\frac{d y}{d x} \cdot \log x+y \cdot \frac{1}{x}=1$
$\log {x} \frac{d y}{d x}=1-\frac{y}{x}$
$\log x \frac{dy}{dx}=\frac{x-y}{x}$
$\frac{d y}{dx}=\frac{x-y}{x \log x}$
(ii) यदि (If) $x y=e^{x-y}$ सिद्ध करें कि (prove that) $\frac{d y}{d x}=\frac{y}{x}\left(\frac{x-1}{y+1}\right)$
Sol :
$x y=e^{x \cdot y}$
Taking log both sides
$\log x \cdot y=\log e^{x-y}$
Differentiating w.r.t.x
$\frac{1}{x}+\frac{1}{y} \times \frac{d y}{d x}=1-\frac{dy}{d x}$
$\frac{1}{y} \frac{d y}{d x}+\frac{d y}{dx}=1-\frac{1}{x}$
$\left(\frac{1}{y}+1\right) \frac{d y}{d x}=1-\frac{1}{x}$
$\left(\frac{1+y}{y}\right) \frac{d y}{dx}=\frac{x-1}{x}$
$\frac{d y}{dx}=\frac{y(x-1)}{x(y+1)}$
Question 15
Sol :
$y=(\cos x)^{(\cos x)^{(\cos x)}\dots \text{to }\infty }$
$y=(\cos x)^{y}$
Taking log both sides
$\log y=\log (\cos x)^{y}$
log y=y.log(cos x)
Differentiating w.r.t.x
$\frac{1}{y} \cdot \frac{d y}{d x}=\frac{d y}{dx} \cdot \log (\cos x)+y \cdot \frac{1}{\cos x} x(-\sin x)$
$\left[\frac{1}{y}-\log (\cos x)\right] \frac{d y}{d x}=-y \tan x$
$\left[\frac{1-y \log(\cos x)}{y}\right] \frac{d y}{d x}=-y \tan x$
$\frac{d y}{dx}=\frac{-y^{2} \tan x}{1-y \log (\cos x)}$
No comments:
Post a Comment