Exercise 11.4
(Q1-Q3)
(Q4-Q6)
(Q7-Q9)
(Q10-Q12)
(Q13-Q15)
(Q16-Q17)
(Q18-20)
Question 18
(i) यदि (If) $2^{x}+x^{y}=1$ निकाले (find) $\frac{d y}{d x}$
Sol :
$2^{x}+x^{y}=1$
$2^{x}+e^{\log x^{y}}=1$
$2^{x}+e^{y \cdot \log x}=1$
Differentiating w.r.t.x
$2^{x} \cdot \log 2+e^{y.\log x} \cdot\left[\frac{d y}{d x} \log x+y \cdot \frac{1}{x}\right]=0$
$2^{x} \log {2}+x^{y}\left[\log {x} \frac{d y}{d x}+\frac{y}{x}\right]=0$
$2^{x} \log 2+x^{y} \log _{x} \frac{d y}{d x}+x^{y} \frac{y}{x}=0$
$x^{y} \cdot \log x {\frac{dy}{dx}}=-\left(2^{x} \log x+x^{y} \frac{y}{x}\right)$
$x^{y} \log x \frac{d y}{d x}=-\left(\frac{x 2^{x} \cdot \log x+x^{y} y}{x}\right)$
$\frac{d y}{d x}=-\left(\frac{x \cdot 2^{x} \log x+y \cdot x^{y}}{x^{y+1} \cdot \log {x}}\right)$
(ii) यदि (If) $x^{y}+y^{x}=1$ निकाले ( find ), $\frac{d y}{d x}$
Sol :
$x^{y}+y^{x}=1$
$e^{\log {x^y}}+e^{\log y^{x}}=1$
$e^{y \log x}+e^{x \log y}=1$
Differentiating w.r.t.x
$e^{y \cdot \log x\left[\frac{d y}{dx} \cdot \log x+y \cdot \frac{1}{x}\right]+e^{x} \log y}\left[1 \cdot \log y+x \cdot \frac{1}{y} \cdot \frac{d y}{d x}\right]=0$
$x^{y}\left[\log x \frac{d y}{dx}+\frac{y}{x}\right]+y^{x}\left[\log y+\frac{x}{y} \frac{d y}{dx}\right]=0$
$x^{y} \cdot \log x \frac{d y}{dx} \frac{y x^{y}}{x}+y^{x} \log{ y}+\frac{x y^{x}}{y} \cdot \frac{d y}{d x}=0$
$\left[x^{y} \log x+\frac{x y^{x}}{y}\right] \frac{d y}{d x}=-\left[\frac{y x^{y}}{x}+y^{x} \log y\right]$
$\left[x^{y} \log x+x y^{x-1}\right] \frac{d y}{dx}=-\left[y \cdot x^{y-1}+y^{x} \log y\right]$
$\frac{d y}{d x}=-\frac{y \cdot x^{y-1}+y^{x} \log {y}}{x^{y} \log {x}+x y^{x-1}}$
Question 19
(i) यदि (If) $y=\frac{x^{2} \sqrt{4 x+3}}{(3 x+1)^{2}}$ निकाले (find) $\frac{d y}{d x}$
Sol :
$y=\frac{x^{2} \sqrt{4 x+3}}{(3 x+1)^{2}}$
Taking log both sides
$\log y=\log \frac{x^{2} \sqrt{4 x+3}}{(3 x+1)^{2}}$
$\log {y}=\log {x^{2}} \sqrt{4 x+3}-\log (3 x+1)^{2}$
$\log y=\log x^{2}+\log \sqrt{4 x+3}-\log (3 x+1)^{2}$
$\log y=2 \log x+\frac{1}{2} \log (4 x+3)-2 \log (3 x+1)$
Differentiating w.r.t.x
$\frac{1}{y} \times \frac{d{y}}{d{x}}=2 \times \frac{1}{x}+\frac{1}{2} \times \frac{1}{4 x+3} \times 4+2\times \frac{1}{3 x+1} \times 3$
$\frac{d y}{d x}=y^{2}\left[\frac{1}{x}+\frac{1}{4 x+3}-\frac{3}{3 x+1}\right]$
$\frac{d y}{d x}=\frac{x^{2} \sqrt{4 x+3}}{(3 x+1)^{2}} \cdot 2\left[\frac{1}{x}+\frac{1}{4 x+3}-\frac{3}{3 x+1}\right]$
(ii) यदि (If) $y=\frac{2(x-\sin x)^{\frac{3}{2}}}{\sqrt{x}}$ निकाले (find) $\frac{d y}{d x}$
Sol :
$y=\frac{2\left(x-\sin x\right)^{\frac{3}{2}}}{\sqrt{x}}$
Taking log both sides
$\log y=\log \frac{2[x-\sin x]^{\frac{3}{2}}}{x^{1 / 2}}$
$\log y=\log {2}(x-\sin x)^{\frac{3}{2}}-\log x^{\frac{1}{2}}$
$\log y=\log 2+\frac{3}{2} \log (x-\sin x)-\frac{1}{2} \log x$
Differentiating w.r.t.x
$\frac{1}{y} \times \frac{dy}{dx}=0+\frac{3}{2} \times \frac{1}{x-\sin x} \times[1-\cos x]-\frac{1}{2} \times \frac{1}{x}$
$\frac{1}{y} \frac{d y}{d x}=\frac{3\left(1-\cos x\right)}{2(x-\sin x)}-\frac{1}{2 x}$
$\frac{d y}{d x}=y\left[\frac{3 x-3 x \cos x-x+\sin x}{2 x(x-\sin x)}\right]$
$\frac{d y}{d x}=\frac{2(x-\sin x)^{\frac{3}{2}}}{\sqrt{x}}\left[\frac{2 x-3 x \cos x+\sin x}{2 x\left(x-\sin x\right)}\right]$
Question 20
निम्नलिखित फलनों को x के सापेक्ष अवकलित करें ।
[Differentiate the following functions w.rt.x]
(i) cosx cos2x cos3x
Sol :
Let y=cosx cos2x cos3x
Taking log both sides
log y=log cosx cos2x cos3x
log y=log cos x+log cos2x+log cos3x
Differentiating w.r.t.x
$\frac{1}{y} \times \frac{d y}{d x}=\frac{1}{\cos x} \times(-\sin x)+\frac{1}{\cos 2 x} \times(-\sin 2 x) \cdot 2+\frac{1}{\cos 3 x} \times(-\sin 3x).3$
$\frac{d y}{d x}=y[-\tan x-2 \tan 2 x-3 \tan 3 x]$
$\frac{d y}{d x}=-\cos \cos 2 x \cos 3x[\tan x+2 \tan 2 x+3 \tan 3 x]$
(ii) sinx sin2x sin3x
Sol :
Let y=sinx sin2x sin3x
Taking log both sides
log y=log sinx sin2x sin3x
log y=log sin x+log sin 2x+log sin 3x
Differentiating w.r.t.x
$\frac{1}{y} \times \frac{dy}{dx}=\frac{1}{\sin x} \times \cos x+\frac{1}{\sin 2 x} \times \cos 2 x\times 2+\frac{1}{\sin 3 x} \times \cos 3 x \times 3$
$\frac{d y}{d x}=y\left[\text{cot x}+2 \cot 2 x+3 \cot 3 x\right]$
$\frac{d y}{d x}=\sin 2x \sin 2 x \sin 3 x[\cot x+2 \cot 2 x+3 \cot 3 x]$
(iii) $\frac{(x-1)^{2}(2 x+1)(x+3)}{e^{x} \sin x}$
Sol :
Let y=$\frac{(x-1)^{2}(2 x+1)(x+3)}{e^{x} \sin x}$
Taking log both sides
$\log y=\log \frac{(x-1)^{2}(2 x+1)(x+3)}{e^{x} \sin x}$
$\log y=\log (x-1)^{2}(2 x+1)(x+3)-\log e^{x} \cdot \sin x$
$\log y=\log (x-1)^{2}+\log (2 x+1)+\log y(x+3)-\log e^{x}-\log \sin x$
log y=2log(x-1)+log(2x+1)+log(x+3)-x-logsinx
Differentiating w.r.t.x
$\frac{1}{y} \times \frac{dy}{dx}=2 \times \frac{1}{x-1}+\frac{1}{2 x+1} \times 2+\frac{1}{x+3}-1-\frac{1}{\sin x}\times \cos x$
$\frac{d y}{d x}=\frac{(x-1)^{2}(2 x+1](x+3)}{e^{x} \sin x}\left[\frac{2}{x-1}+\frac{2}{2 x+1}+\frac{1}{x+3}-1- \cot x\right]$
(iv) $\frac{(x+1)^{3 / 2} \cdot \log x}{x^{3} \sin x}$
Sol :
Let y=$\frac{(x+1)^{3 / 2} \cdot \log x}{x^{3} \sin x}$
Taking log both sides
$\log {y}=\log \frac{(x+1)^{3 / 2} \log x}{x^{3} \sin x}$
$\log y=\log (x+1)^{\frac{3}{2}} \cdot \log x-\log x^{3}\sin x$
$\log y=\log (x+1)^{3 / 2}+\log \log x-\left[\log x^{3}+\log \sin x]\right.$
$\log y=\frac{3}{2} \log (x+1)+\log (\log x)-3 \log x-\log \sin x$
Differentiating w.r.t.x
$\frac{1}{y} \times \frac{d y}{d x}=\frac{3}{2} \times \frac{1}{x+1}+\frac{1}{\log x}\times\frac{1}{x}-3\times \frac{1}{x}-\frac{1}{\sin x} \times \operatorname{cos} x$
$\frac{d y}{d x}=\frac{(x+1)^{3 / 2} \log x}{x^{3}-\sin x}\left[\frac{3}{2(x+1)}+\frac{1}{x \log x}-\frac{3}{x}-\cot x\right]$
(v) $(x+1)^{2}(x-2)^{3}(x+4) \log x$
Sol :
Let y=$(x+1)^{2}(x-2)^{3}(x+4) \log x$
Taking log both sides
$\log y=\log y(x+1)^{2}(x-2)^{3}(x+4) \log x$
$\log y=\log (x+1)^{2}+\log (x-2)^{3}+\log (x+4)+\log (\log x)$
$\log y=2 \log (x+1)+3 \log (x-2)+\log (x+4)+\log (\log 4)$
Differentiating w.r.t.x
$\frac{1}{y} \times \frac{d y}{d x}=2 \times\frac{x}{x+1}+3 \times\frac{x }{x-2}+\frac{1}{x+4}+\frac{1}{\log x} \times \frac{1}{x}$
$\frac{d y}{d x}=(x+1)^{2}(x-2)^{3}(x+4) \cdot \log x\left[\frac{2}{x+1}+\frac{3}{x-2}+\frac{1}{x+4}+\frac{1}{x \log x}\right]$
(vi) $(x+3)^{2}(x+4)^{3}(x+5)^{4}$
Sol :
Let y=$(x+3)^{2}(x+4)^{3}(x+5)^{4}$
Taking log both sides
$\log y=\log (x+3)^{2}(x+4)^{3}(x+5)^{4}$
$\log y=\log (x+3)^{2}+\log (x+4)^{3}+\log (x+5)^{4}$
$\log y=2 \log (x+3)+3 \log (x+4)+4 \log (x+5)$
Differentiating w.r.t.x
$\frac{1}{y} \times \frac{d y}{d x}-2 \times \frac{x }{x+3}+3 \times \frac{1}{x+4}+4 \times \frac{1}{x+5}$
$\frac{d y}{dx}=(x+3)^{2}(x+4)^{3}(x+5)^{4}\left[\frac{2}{x+3}+\frac{3}{x+4}+\frac{4}{x+5}\right]$
$=(x+3)^{2}(x+4)^{3}(x+5)^{4}\left[\frac{2\left(x^{2}+9 x+20\right)+3\left(x^{2}+8 x+15\right)+4(x^2+7x+12)}{(x+3)(x+4)\left(x+5\right)}\right]$
$=(x+3)(x+4)^{2}(x+5)^{3}\left[\begin{array}{c}2 x^{2}+18 x+40+3 x^{2}+24x+45+4 x^{2}+28 x+48\end{array}\right.$
$\frac{dy}{dx}(x+3)(x+4)^{2}(x+5)^{3}\left(5 x^{2}+70 x+133\right)$
No comments:
Post a Comment