Processing math: 0%
KC Sinha Mathematics Solution Class 12 Chapter 11 अवकलन (Differentiation) Exercise 11.4 (Q16-Q17)
Exercise 11.4
(Q1-Q3)
(Q4-Q6)
(Q7-Q9)
(Q10-Q12)
(Q13-Q15)
(Q16-Q17)
(Q18-20)
Question 16
निम्नलिखित फलनों को x के सापेक्ष अवकलित करें ।
[Differentiate the following functions w.rt. x]
(i)
(\log x)^{x}+x^{\log x}
Sol :
Let
y=u+v=(\log x)^{x}+x^{\log _{x}}
u=(\log x)^{x}
Taking log both sides
\log u=\log \left(\log {x}\right)^{x}
log u=x log(log x)
Differentiating w.r.t.x
\frac{1}{u} \cdot \frac{d u}{d x}=1.\log (\log x)+x \times \frac{1}{\log x} \times \frac{1}{2}
\frac{d u}{d x}=u\left[\log (\log x)+\frac{1}{\log x}\right]
\frac{d u}{d x}=(\log x)^{x}\left[\log \left( \log x\right)+\frac{1}{\log x}\right]
\frac{du}{dx}=\left(\log x\right)^{x}\left[\frac{\left[\log x \log (\log x)+1\right.}{\log x}\right]
\frac{du}{dx}=\left(\log x\right)^{x-1}\left[1+\log {x} \cdot \log (\log x)\right]
Now ,
v=x^{\log x}
Taking log both sides
\log v=\log {x} ^{\log x}
log v=log x.log x
\log v=(\log x)^{2}
Differentiating w.r.t.x
\frac{1}{v} \cdot \frac{d v}{d x}=2 \log x \times \frac{1}{x}
\frac{d v}{d x}=v \cdot \frac{2 \log x}{x}
\frac{d v}{d x}=x^{\log x} \cdot \frac{2 \log x}{x}
\frac{d v}{dx}=2 x^{\log x-1} \cdot \log x
∵ y=u+v
Differentiating w.r.t.x
\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}
\frac{d y}{d x}=(\log x)^{x-1}[1+\log x \cdot \log (\log x)]+2 x^{\log x-1} \log x
(ii)
x^{\sin x}+(\sin x)^{\cos x}
Sol :
Let y=u+v=
x^{\sin x}+(\sin x)^{\cos x}
u=x^{\sin x}
Taking log both sides
\log u=\log x ^{\sin x}
log u=sin x.log x
Differentiating w.r.t.x
\frac{1}{u}\times \frac{d u}{d x}=\cos x \cdot \log x+\sin x \times \frac{1}{x}
\frac{du}{d x}=4\left[\frac{\sin x}{x}+\cos x \cdot \log x\right]
\frac{du}{dx}=x^{\sin x}\left[\frac{\sin x}{x}+\cos x \log x\right]
Now ,
v=(\sin x)^{\cos x}
Taking log both sides
\log v=\log (\sin x)^{\cos x}
\log v=\cos x \cdot \log (\sin x)
Differentiating w.r.t.x
\frac{1}{v} \times \frac{d v}{d x}=-\sin x \log (\sin x)+\cos x\times \frac{1}{\sin x} \times \cos x
\frac{d{v}}{dx}=v[\cos x \cdot \cot x-\sin x \log (\sin x)]
\frac{d v}{d x}=(\sin x)^{\cos x}[\cos x \cot x-\sin x \log (\sin x)]
∵ y=u+v
Differentiating w.r.t.x
\frac{d y}{d x}=x^{\sin x}\left[\frac{\sin x}{2}+\cos x \log x\right]+(\sin x)^{\cos x}[\cos x.\cot x-\sin x\log(\sin x) ]
(iii)
x^{x}-2 \sin x
Sol :
Let y=u-v=
x^{x}-2 \sin x
u=x^{x}
Taking log both sides
\log u=\log x^{x}
log u=x.log x
Differentiating w.r.t.x
\frac{1}{u} \cdot \frac{d y}{dx}=1 \cdot \log x+x \times \frac{1}{x}
\frac{d u}{d x}=u[1+\log x]
\frac{d u}{d x}=x^{x}\left[1+\log x\right]
Now ,
v=2^{\sin x}
Taking log both sides
\log v=\log 2^{\sin x}
log v=sin x .log 2
Differentiating w.r.t.x
\frac{1}{v} \cdot \frac{d v}{d x}=\cos x \cdot \log {2}
\frac{d v}{dx}=2^{\sin x} \cdot \cos x \log 2
∵y=u-v
Differentiating w.r.t.x
\frac{d y}{dx}=\frac{d u}{dx}-\frac{d v}{d x}
\frac{d y}{d x}=x^{2}(1+\log x)-2^{\sin x} \cos x\log 2
(iv)
(\sin x)^{x}+\sin ^{-1} \sqrt{x}
Sol :
Let y=
(\sin x)^{x}+\sin ^{-1} \sqrt{x}
u=(\sin x)^{x}
Taking log both sides
\log u=\log (\sin x)^{x}
log u=x.log(sin x)
Differentiating w.r.t.x
\frac{1}{u} \times \frac{d y}{d x}=1 \cdot \log (\sin x)+x \frac{1}{\sin x} \times \cos x
\frac{du}{dx}=u[x \cot x+\log (\sin x)]
\frac{du}{dx}=(\sin x)^{x}\left[x \cot x+\log \left(\sin x\right)\right]
Now ,
u=\sin ^{-1} \sqrt{2}
Differentiating w.r.t.x
\frac{d v}{d u}=\frac{1}{\sqrt{1-(\sqrt{x})^{2}}} \times \frac{1}{2 \sqrt{x}}=\frac{1}{2 \sqrt{x} \sqrt{1-2}}
\frac{d v}{d x}=\frac{1}{2 \sqrt{x-x^{2}}}
∵ y=u+v
Differentiating w.r.t.x
\frac{d y}{d x}=\frac{d y}{d x}+\frac{d v}{d x}=(\sin x)^{x}[x \cot x+\log (\sin x)]+\frac{1}{2 \sqrt{x-x^{2}}}
(v)
x^{x \cos x}+\frac{x^{2}+1}{x^{2}-1}
Sol :
Let y=u+v=
x^{x \cos x}+\frac{x^{2}+1}{x^{2}-1}
u=x^{x \cos x}
Taking both sides log
\log u=\log x^{x \cos x}
\log u=x \cos x \cdot \log {x}
Differentiating w.r.t.x
\frac{1}{u} \times \frac{d u}{d x}=1 \cdot \cos x \log x+x(-\sin x) \log x + x \cos x \times \frac{1}{x}
\frac{du}{dx}=u\left[\cos x+\cos x \log x-x \sin x \log x\right]
\frac{d u}{d x}=x^{x\cos x} [\cos x(1+\log x)-x \sin x \log x]
Now ,
v=\frac{x^{2}+1}{x^{2}-1}
Differentiating w.r.t.x
\frac{d v}{d x}=\frac{2 x\left(x^{2}-1\right)-\left(x^{2}+1\right) \cdot 2 x}{\left(x^{2}-1\right)^{2}}
=\frac{2 x^{3}-2 x-2 x^{3}-2 x}{\left(x^{2}-1\right)^{2}}
=\frac{-4 x}{\left(x^{2}-1\right)^{2}}
∵y=u+v
Differentiating w.r.t.x
\frac{d y}{dx}=\frac{d y}{d x}+\frac{d v}{d x}
=x^{x \cos x}[\cos x(1+\log x)-x \sin x \log x]
(vi)
(x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}
Sol :
Let y=
(x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}
u=(x \cos x)^{x}
Taking log both sides
\log u=\log (x \cos x)^{x}
\log u=x \cdot \log (x \cos x)
Differentiating w.r.t.x
\frac{1}{u} \times \frac{d y}{d x}=1 . \log \left(x \cos x\right)+x \cdot \frac{1}{x \cos x}[1.\cos x+x(-\sin x)]
\frac{du}{dx}=u[\log (x \cos x)+1-x \tan x]
\frac{d y}{d x}=(x \cos x)^{x}[1-x \tan x+\log (x \cos x)]
Now ,
v=(x \sin x)^{\frac{1}{x}}
Taking log both sides
\log v=\log (x \sin x)^{\frac{1}{x}}
\log v=\frac{1}{x} \log (x \sin x)
Differentiating w.r.t.x
\frac{1}{v} \times \frac{d v}{d x}=\frac{\frac{1}{x \sin x}[1 . \sin x+x \cos x] x-\log {y}(x \sin 3 x).1]}{x^2}
\frac{1}{v} \times \frac{du}{dx}=\frac{1+x \cot x-\log (x\sin x)}{x^{2}}
\frac{d v}{d x}=(x \sin x)^{\frac{1}{x}}\left[\frac{1+x \cot x-\log (x \sin x)]}{x^{2}}\right]
y=u+v
Differentiating w.r.t.x
\frac{d y}{dx}=\frac{d y}{d x}+\frac{d v}{d x}
=(x \cos x)^x[1-x \tan x+\log(x \cos x)]+(x \sin x)^{\frac{1}{x}}\left[\frac{1+x\cot x-\log (x\sin x)}{x^{2}}\right]
(vii)
x^{x^{2}-3}+(x-3)^{x^{2}}, x>3
Sol :
Let y=u+v=
x^{x^{2}-3}+(x-3)^{x^{2}}
u=x^{x^{2}-3}
Taking log both sides
\log u=\log x^{x^2}-3
\log u=\left(x^{2}-3\right) \cdot \log x
Differentiating w.r.t.x
\frac{1}{u} \cdot \frac{d y}{d x}=2 x \cdot \log x+\left(x^{2}-3\right) \times \frac{1}{x}
\frac{d y}{dx}=u\left[\frac{x^{2}-3}{x}+2 x \log x\right]
\frac{d y}{d x}=x^{x^{2}-3}\left[\frac{x^{2}-3}{x}+2 x \log x\right]
Now ,
v=(x-3)^{x^{2}}
Taking log both sides
\log v=\log {(x-3)}^{x^{2}}
\log v=x^{2} \cdot \log (x-3)
Differentiating w.r.t.x
\frac{1}{v} \times \frac{d v}{d x}=2 x \cdot \log (x-3)+x^{2} \frac{1}{x-3}
\frac{dv}{dx}=v\left[\frac{x^{2}}{x-3}+2 x \log (x-3)\right]
\frac{d v}{dx}=(x-3)^{x^{2}}\left[\frac{x^{2}}{x-3}+2 x \log (x-3)\right]
∵ y=u+v
Differentiating w.r.t.x
\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}
\frac{d y}{dx}=x^{x^{2}-3}\left[\frac{x^{2}-3}{x}+2 x \log x\right]+(x-3)^{x^{2}}\left[\frac{x^{2}}{x-3}+2x \log(x-3)\right]
Question 17
(i) यदि (If)
y=x^{x}+x^{\frac{1}{x}}
निकाले (find)
\frac{d y}{d x}
Sol :
Let
u=x^{x}, v=x^{\frac{1}{x}}
and
y=u+v
u=x^{x}
Taking log both sides
\log u=\log x^x
\log u=x \cdot \log {x}
Differentiating w.r.t.x
\frac{1}{u} \times \frac{d y}{d x}=1 \cdot \log x+x \times \frac{1}{x}
\frac{d u}{d x}=x^{x}[\log x+1]
v=x^{\frac{1}{x}}
Taking log both sides
\log v=\log {x} \frac{1}{x}
\log v=\frac{1}{x} \cdot \log x
\log v=\frac{\log {x}}{x}
Differentiating w.r.t.x
\frac{1}{v} \times \frac{d v}{d u}=\frac{\frac{1}{x} \times x-\lg x \cdot 1}{x^{2}}
\frac{d v}{dx}=x^{\frac{1}{x}}\left[\frac{1-\log x}{x^{2}}\right]
y=u+v
Differentiating w.r.t.x
\frac{d y}{dx}=\frac{d u}{dx}+\frac{d v}{dx}
=x^{x}(\log x+1)+x^{\frac{1}{x}}\left(\frac{1-\log x}{x^{2}}\right)
(ii) यदि (If)
y=x+x^{\frac{1}{x}}
(find)
\frac{dy}{dx}
निकालें।
Sol :
(iii) यदि (If)
y=(\sin x)^{\cos x}+(\cos x)^{\sin x}
निकाले (Find)
\frac{d y}{d x}
Sol :
Let
u=(\sin x)^{\cos x}, \quad v=(\cos x)^{\sin x}
y=u+v
u=(\sin x)^{\cos x}
Taking log both sides
\log u=\log (\sin x)^{\cos x}
log u=cos x. log (sin x)
Differentiating w.r.t.x
\frac{1}{u} \times \frac{du}{dx}=-\sin x \log (\sin x)+\cos x \times \frac{1}{x}\times \cos x
\frac{du}{dx}=(\sin x)^{\cos x}[\cot x \cos x-\sin x \log (\sin x)]
\frac{d u}{dx}=(\sin x)^{\cos x}\left[\cot x-\log (\tan x)^{\sin x}\right]
Now ,
v=(\cos x)^{\sin x}
Taking log both sides
\log v=\log (\cos x)^{\sin x}
\log v=\sin x \cdot \log (\cos x)
Differentiating w.r.t.x
\frac{1}{v} \times \frac{d v}{d x}=\cos x\log(\sin x)+\sin x \frac{1}{\cos x} \times(-\sin x)
\frac{d v}{d x}=(\cos )^{\sin x}\left[\log (\cos x)^{\cos x}-\tan x \sin x\right]
y=u+v
Differentiating w.r.t.x
\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{dx}
\frac{d y}{dx}=(\sin x)^{\cos x}\left[\cot x \cos x-\log (\sin x)^{\sin x}\right]+\left(\cos\right)^{\sin x }\left[\log \left(\cos x\right)^{\cos x}-\tan x \sin x\right]
(iv) यदि (If)
y=x^{\tan x}+(\tan x)^{\cot x}
निकाले (find)
\frac{d y}{d x}
Sol :
Let
u=x^{\tan x}
,
v=(\tan x)^{\cot x}
,
y=u+v
u=x^{\tan x}
Taking log both sides
\log u=\log x^{ \tan x}
log u=tan x.log x
Differentiating w.r.t.x
\frac{1}{u} \cdot \frac{du}{dx}=\sec ^{2} x \cdot \log {x}+\tan x \times\frac{1}{x}
\frac{d y}{d x}=x^{\tan x}\left[\frac{\tan x}{2}+\sec^{2} x \cos x\right]
Now ,
v=(\tan x)^{\operatorname{cot} x}
Taking log both sides
\log {v}=\log (\tan x)^{\cot x}
log v=cot x.log (tan x)
Differentiating w.r.t.x
\frac{1}{v} \times \frac{d v}{d x}=-\operatorname{cosec}^{2} x \cdot \log (\tan x)+\cot x \times\frac{1}{\tan x} \times \operatorname{sec}^{2} x
\frac{1}{v} \times \frac{d v}{d x}=\frac{\cos x}{\sin x} \times \frac{1}{\frac{\sin x}{\cos x}} \times \frac{1}{\cos ^{2} x}-\operatorname{cosec}^{2} x \log \left(\tan x\right)
\frac{d v}{dx}=(\tan x)^{\cot x}\left[\operatorname{cosec}^{2} x-\operatorname{cosec}^{2} x \log (\tan x)\right]
\frac{dv}{dx}=(\tan x)^{\cot x} \operatorname{cosec}^{2} x[1-\log (\tan x)]
y=u+v
Differentiating w.r.t.x
\frac{d y}{dx}=\frac{d y}{dx}+\frac{d y}{d x}
\frac{d y}{dx}=x^{\tan x}\left[\frac{\tan x}{x}+\sec ^{2} x \log x\right]+(\tan x)^{\cot x} \cdot \text{cosec x}^{2} x(1-\log (\tan x)]
(v) यदि (If)
y=(\tan x)^{\cot x}+(\cot x)^{\tan x}
निकाले (find)
\frac{d y}{d x}
Sol :
Let
u=(\tan x)^{\cot x}
v=(\cot x)^{\tan x}
y=u+v
u=(\tan x)^{\cot x}
Taking log both sides
\log u=\log (\tan x)^{\cot x}
log u=cot x.log(tan x)
Differentiating w.r.t.x
\frac{1}{u} \times \frac{d y}{dx}=-\operatorname{cosec}^{2} x \cdot \log (\tan x)+\cot x \times \frac{1}{\tan x} \times \operatorname{sec}^{2} x
\frac{d u}{dx}=u\left[\frac{\cos x}{\sin x} \times \frac{1}{\frac{\sin x}{\cos x}} \times \frac{1}{\cos ^{2} x}-\operatorname{cosec}^{2} x \log (\tan x)\right]
\frac{d u}{d x}=(\tan x)^{\cot x}.\text{cosec}^{2}x[1-\log(\tan x)]
Now ,
v=(\cot x)^{\tan x}
Taking log both sides
\log v=\log \left(\cot {x}\right)^{\tan x}
\log v=\tan x \cdot \log (\cot x)
Differentiating w.r.t.x
\frac{1}{v} \times \frac{d v}{dx}=\sec ^{2} x \log (\operatorname{cot x})+\tan x \cdot \frac{1}{\operatorname{cot} x} \times\left(-\text{cosec} ^{2} x\right)
\frac{d v}{d x}=v\left[\sec ^{2} x \log (\cot x)-\frac{\sin x}{\cos x} \times \frac{1}{\frac{\cos x}{\sin x}} \times \frac{1}{\sin^{2}x}\right.
\frac{d v}{d x}=(\cot x)^{\tan x} \sec ^{2} x[\log (\cot x)-1]
y=u+v
Differentiating w.r.t.x
\frac{d y}{dx}=\frac{d u}{d x}-\frac{d v}{d x}
\frac{d y}{d x}=(\tan x)^{\cot x} \operatorname{cosec}^{2} x(1-\log (\tan x)]+(\cot x)^{\tan x}.\sec^2x[\log(\cot x)-1]
(vi) यदि (If)
y=x^{x}+(\sin x)^{\cot x}
निकाले (Find)
\frac{d y}{d x}
Sol :
Let
u=x^{x}
v=(\sin x)^{\cos x}
y=u+v
u=x^{x}
Taking log both sides
\log u=\log x^{x}
log u=x.logx
Differentiating w.r.t.x
\frac{1}{u} \cdot \frac{d y}{dx}=1 \cdot \log x+x \cdot \frac{1}{x}
\frac{du}{dx}=x^{2}\left[1+\log {x}\right]
Now ,
v=(\sin x)^{\operatorname{cot x}}
log v=cot x.log(sin x)
Differentiating w.r.t.x
\frac{1}{v} \times \frac{d v}{d x}=-\text{cosec} ^{2} x \cdot \log (\sin x)+\cot x \frac{1}{\sin x} \times \cos x
\frac{d v}{dx}=v\left[\cot^{2} x-\text{cosec} ^{2} x \log (\sin x)\right]
\frac{d v}{dx}=(\sin x)^{\cot x}\left[\cot ^{2} x-\text{cosec} ^{2} x \log (\sin x)\right]
∵ y=u+v
Differentiating w.r.t.x
\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}
\frac{d y}{dx}=x^{x}\left(1+\log x\right)+(\sin x)^{\cot x}[\cot^2 x-\text{cosec}^2x.\log(\sin x)]
(vii) यदि(If)
y=(x)^{\cos x}+(\cos x)^{\sin x}
निकाले (find)
\frac{d y}{d x}
Sol :
Let
u=x^{\cos x}
v=(\cos x)^{\sin x}
y=u+v
u=x^{\cos x}
Taking log both sides
\log u=\log x^{ \cos x}
log u=cos x.log x
Differentiating w.r.t.x
\frac{1}{u} \times \frac{du}{dx}=-\sin x \cdot \log x+\cos x \cdot \frac{1}{x}
\frac{d u}{dx}=u\left[\frac{\cos x}{x}-\sin x \log x\right]
\frac{d y}{d x}=x^{\cos x}\left[\frac{\cos x}{x}-\operatorname{sin} x \log x\right]
Now ,
v=(\cos x)^{\sin x}
Taking log both sides
\log v=\log(\cos x)^{\sin x}
log v=sin x.log(cos x)
Differentiating w.r.t.x
\frac{1}{v} \times \frac{du}{dx}=\cos x \cdot \log (\cos x)+\sin x \times \frac{1}{\cos x} \times(-\sin x)
\frac{d v}{dx}=v[\cos x \log (\cos x)-\sin x \tan x]
\frac{d v}{d x}=(\cos )^{\sin} [(\cos x \log x(\cos x)-\sin x \tan x]
∵ y=u+v
Differentiating w.r.t.x
\frac{d y}{d x}=\frac{d u}{dx}+\frac{d v}{d x}
\frac{d y}{dx}=x^{\cos x}\left(\frac{\cos x}{x}-\sin x \log x )+(\cos x)^{\sin x}.[\cos x \log \cos x-\sin x \tan x]\right.
(viii)
e^{\sin x}+(\tan x)^x
को x के सापेज्ञ अवकलित करें ।
Sol :
Let y=u+v
=e^{\sin x}+(\tan x)^{x}
u=e^{\sin x}
Differentiating w.r.t.x
\frac{d u}{d x}=e^{\sin x} \cdot \cos x
v=(\tan x)^{x}
Taking log both sides
\log u=\log (\tan x)^{2}
log u=x.log(tan x)
Differentiating w.r.t.x
\frac{1}{v} \times \frac{d v}{d x}=1 . \log (\tan x)+x \frac{1}{\tan x} \times \sec ^{2} x
\frac{d v}{d x}=(\tan x)^{x}[\log (\tan x)+x \operatorname{cosec} x+\sec x]
∵ y=u+v
Differentiating w.r.t.x
\frac{d y}{dx}=\frac{d y}{d x}+\frac{d v}{d x}
\frac{d y}{dx}=e^{\sin x} \cdot \cos x+(\tan x)^{x}\left[\log {\tan(x-2)+x \text{cosec x} \sec x}\right.
No comments:
Post a Comment
Home
Contact Form
Name
Email
*
Message
*
No comments:
Post a Comment