Exercise 12.1
Question 1
निम्नलिखित फलनों के द्वितीय(कोटि) का अवकलज ज्ञात करें ।[Find the second order derivatives of the following functions]
(i) log x
Sol :
माना y=log x
Differentiating w.r.t x
$\frac{d y}{dx}=\frac{1}{x}$
Again, Differentiating w.r.t x
$\frac{d^{2} y}{d x^{2}}=-\frac{1}{x^{2}}$
(ii) x20
Sol :
माना y=x20
Differentiating w.r.t x
$\frac{d y}{dx}=20 x^{19}$
Again , differentiating w.r.t x
$\frac{d^{2} y}{d x^{2}}=380 x^{18}$
(iii) log(log x)
Sol :
माना y=log(log x)
Differentiating w.r.t x
$\frac{d y}{d x}=\frac{1}{\log x} \times \frac{1}{x}$
$\frac{d y}{d x}=\frac{1}{x \log x}$
Again , Differentiating w.r.t x
$\frac{d^{2}y}{d x^{2}}=\frac{0 \cdot x \log x-1 \cdot\left[1 \cdot \log {x}+x \times \frac{1}{x}\right]}{(x \log x)^{2}}$
$=\frac{-\left(\log x+1\right)}{\left(x \log x\right)^{2}}$
(iv) x2+3x+2
Sol :
माना y=x2+3x+2
Differentiating w.r.t x
$\frac{d y}{d x}=2 x+3$
Again, differentiating w.r.t x
$\frac{d^{2} y}{dx^{2}}=2$
(v) xcosx
Sol :
माना y=xcosx
Differentiating w.r.t x
$\frac{d y}{d x}=1 \cdot \cos x+x(-\sin x)$
$\frac{d y}{d x}=\cos x-x \sin x$
Again, Differentiate w.r.t x
$\frac{d^{2} y}{d x^{2}}=-\sin x-[1 \cdot \operatorname{sin} x+x \cos x]$
=-sinx-sinx-xcosx
=-xcosx-2sinx
(vi) exsin5x
Sol :
माना y=exsin5x
Differentiating w.r.t x
$\frac{d y}{dx}=e^{x} \cdot \sin 5 x+e^{x} \cdot \cos 5x \times 5$
$\frac{d y}{d x}=e^{x} \sin 5 x+5e ^{2} \cos x$
Again, Differentiating w.r.t x
$\frac{d^{2} y}{d x^{2}}=e^{x} \sin 5 x+e^{x} \cos 5 x \times 5+\left[e^{x} \cos 5 x+e^{2}(-\sin 5x) \times 5\right]$
=exsin5x+5excos5x+5excos5x-25exsin5x
=10excos5x-24exsin5x
=2ex(5cos5x-12sin5x)
(vii) sin(log x)
Sol :
माना y=sin(log x)
Differentiating w.r.t x
$\frac{d y}{dx}=\cos (\log x) \times \frac{1}{x}$
$\frac{d y}{dx}=\frac{\cos (\log x)}{x}$
Again, Differentiating w.r.t x
$\frac{d^{2} y}{d x^{2}}=\frac{-\sin (\log x) \times \frac{1}{x} \times x-\cos (\log x) \times 1}{x^{2}}$
$=-\frac{\sin\left(\log x\right)+\cos \left(\log x\right)}{x^{2}}$
Question 2
यदि(If) y=sin(log x) , सिद्ध करे कि (prove that) $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$Sol :
y=sin(log x)
Differentiating w.r.t x
$\frac{d y}{d x}=\cos (\log x) \times \frac{1}{x}$
$\frac{dy}{dx}=\frac{\cos\left(\log x\right)}{x}$
Again , Differentiating w.r.t x
$\frac{d^{2} y}{d x^{2}}=\frac{-\sin \left(\log x\right) \times \frac{1}{x}.x-\cos \left(\log x\right) \cdot 1}{x^{2}}$
$\frac{d^{2} y}{d x^{2}}=-\frac{[\sin 4(\log x)+\cos (\log x)]}{x^{2}}$
$x^{2} \frac{d^{2} y}{d x^{2}}=-\sin (\log x)-\cos (\log x)$
$x^{2} \frac{d^{2} y}{d x^{2}}=-y-x \cdot \frac{d y}{dx}$
$x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{dx}+y=0$
Question 3
यदि(If) y=x3+tanx , दिखाएँ कि(show that) $\frac{d^{2} y}{d x^{2}}=6 x+2 \sec ^{2} x \tan x$Sol :
y=x3+tanx
Differentiating w.r.t x
$\frac{d y}{d x}=3 x^{2}+\sec ^{2} x$
Again ,Differentiating w.r.t x
$\frac{d^{2} y}{d x^{2}}=6 x+2 \sec x \cdot \sec x \tan x$
$=6 x+2 \operatorname{sec}^{2} x \tan x$
Thanks ❤❤
ReplyDelete