KC Sinha Mathematics Solution Class 12 Chapter 12 द्वितीय कोटि का अवकलज (Second Order Derivative) Exercise 12.1 (Q7-Q9)

Exercise 12.1











Question 7

यदि(If) y=Asinx+Bcosx, सिद्द करे कि (prove that) $\frac{d^{2} y}{d x^{2}}+y=0$
Sol :
y=Asinx+Bcosx

Differentiating w.r.t x

$\frac{d y}{d x}=A \cos x+B(-\sin x)$

Again ,Differentiating w.r.t x

$\frac{d^{2} y}{d x^{2}}=A(-\sin x)-B\cos x$

$\frac{d^{2} y}{d x^{2}}=-\left[A \sin x+B\cos x\right]$

$\frac{d^{2} y}{d x^{2}}=-y$

$\frac{d^{2} y}{d x^{2}}+y=0$


Question 8

यदि(If) y=5cosx-3sinx , सिद्ध करे कि (prove that) $\frac{d^{2} y}{d x^{2}}+y=0$
Sol :
y=5cosx-3sinx

Differentiating w.r.t x

$\frac{d y}{dx}=-5\sin x-3 \cos x$

Again ,Differentiating w.r.t x

$\frac{d^{2} y}{d x^{2}}=-5 \cos x-3(-\sin x)$

$\frac{d^{2} y}{d x^{2}}=-[5\cos x-3 \sin x]$

$\frac{d^{2} y}{d x^{2}}=-y \Rightarrow \frac{d^{2} y}{d x^{2}}+y=0$


Question 9

A और B ज्ञात करे ताकि(Find A and B such that) y=Asin5x+Bcos5x समीकरण (satisfies the equation) $\frac{d^{2} y}{d x^{2}}+\frac{1}{5} \cdot \frac{d y}{d x}+15 y=101 \sin 5 x$ को संतुष्ट करता है ।
Sol :
y=Asin5x+Bcos5x

Differentiating w.r.t x

$\frac{d y}{d x}=5 A \cos x-5B \sin 5 x$

Again ,Differentiating w.r.t x

$\frac{d^{2} y}{d x^{2}}=-5 \times 5 A \sin 5 x-5 \times 5 B \cos 5 x$

=-25Asin5x-25Bcosx

∵$\frac{d^{2} y}{d x^{2}}+\frac{1}{5} \cdot \frac{d y}{d x}+15 y=101 \mathrm{sin} 5 x$

-25Asin5x-25Bcos5x+$\frac{1}{5}$(5Acos5x-5Bsin5x)+15(Asin5x+Bcos5x)=101sin5x


-25Asin5x-25Bcosx+Acos5x-Bsin5x+15Asin5x+15Bcos5x=101sin5x


-10Asin5x-Bsin5x-10Bcos5x+Acos5x=101sin5x


(-10A-B)sin5x+(-10B+A)cos5x=101sin5x+0.cos5x

By Equating

-10A-B=101..(i)×1

A-10B=0..(ii)×10

$\begin{aligned}-10A-B=101\\10A-100B=0 \\\hline -101B=101 \end{aligned}$

B=-1

समीकरण (ii) मे B का मान रखने पर ,

A-10(-1)=0

A=-10


No comments:

Post a Comment

Contact Form

Name

Email *

Message *