Exercise 12.1
Question 22
यदि(If) y=x^{n-1} \log x सिद्ध करे कि(prove that) x^{2} y_{2}+(3-2 n) x y_{1}+(n-1)^{2} y=0Sol :
y=x^{n-1} \cdot \log x
Differentiating w.r.t x
y_{1}=(n-1) x^{n-2} \cdot \log x+x^{n-1} \cdot \frac{1}{x}
y_{1}=(n-1) x^{n-2} \cdot \log x+x^{n-2}
Again , Differentiating w.r.t x
y_{2}=(n-1)\left[(n-2) x^{n-3} \cdot \log x+x^{n-2} \times \frac{1}{x}\right]+(n-2) x^{n-3}
y_{2}=(n-1)\left[(n-2) x^{n-3} \log x+x^{n-3}\right]+(n-2) x^{n-3}
y_2=\left(n^{2}-3 n+2\right) \cdot x^{n-3} \cdot \log x+(n-1) x^{n-3}+(n-2) \cdot x^{n-3}
y_{2}=\left(n^{2}-3 n+2\right) x^{n-3} \cdot \log x+(2 n-3) \cdot x^{n-3}
L.H.S
x^{2} y_{2}+(3-2 n) x y_{3}+(n-1)^{2}
=x^{2}\left[\left(n^{2}-3 n+2\right) x^{n-3} \cdot \log x+(2 n-3) x^{n-3}\right]+(3-2 n) x[(n-1)x^{n-2}.\log x+x^{n-2}]+(n^2-2n+1)x^{n-1}\log x
=\left(n^{2}-3 n+2\right) x^{n-1} \log x+(2 n-3) x^{n-1}+\left(5 n-3-2 n^{2}\right) x^{n-1} \cdot \log x+(3-2 n) \cdot x^{n-1}+(n^2-2n+1)x^{n-1}\log x
=\left[n^{2}-3 n+2+5-3-2 n^{2}+n^{2}-2 n+1\right] x^{n-1} \log x+(2n-3+3-2n)x^{n-1}
=\left[2 n^{2}-2 n^{2}-5 n+5 n+3-3\right] \cdot x^{4-1} \cdot \log x+0 \cdot x^{n-1}
=0
Question 23
यदि(If) y=\log \left(\frac{x}{a+b x}\right)^{x}सिद्ध करे कि (prove that) \frac{d^{2} y}{d x^{2}}=\frac{1}{x}\left(\frac{a}{a+b x}\right)^{2}
या यदि (if) x=(a+b x) e^{\frac{y}{x}} सिद्ध करे कि (prove that)
x^{3} \frac{d^{2} y}{d x^{2}}=\left(x \frac{d y}{d x}-y\right)^{2}
Sol :
\frac{y}{x}=\log \left(\frac{x}{a+b x}\right)
e^{\frac{y}{2}}=\frac{x}{a+b z}
(a+b x) e^{\frac{y}{x}}=x
y=\log \left(\frac{x}{a+b x}\right)^{x}
y=x \cdot \log \left(\frac{x}{a+b x}\right)
y=x[log x-log (a+bx)]
\frac{y}{x}=\log x-\log (a+b x)
Differentiating w.r.t x
\frac{\frac{d y}{dx} x-y \cdot 1}{x^{2}}=\frac{1}{x}-\frac{1}{a+b x} \times b
x \frac{d y}{dx}-y=x^{2}\left[\frac{1}{x}-\frac{b}{a+b x}\right]
\frac{x{dy}}{dx}-y=x^{2}\left[\frac{a+b x-b x}{x(a+b x)}\right]
x \frac{d y}{d x}-y=\frac{a x}{a+b x}
Differentiating w.r.t x
1.\frac{d y}{d x}+x \cdot \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=\frac{a \cdot(a+b x)-a x \cdot b}{(a+b x)^{2}}
\frac{d y}{d x}-x\frac{d^2 y}{d x^2}-\frac{dy}{dx}=\frac{a^{2}+a b x-a b x}{(a+b x)^{2}}
x \frac{d^{2} y}{d x^{2}}=\frac{a^{2}}{(a+b x)^{2}}
Multiplying by x^{2} in both sides
x^{3} \cdot \frac{d^{2} y}{d x^{2}}=\frac{a^{2} x^{2}}{(a+b x)^{2}}
x^{3} \cdot \frac{d^{2} y}{d x^{2}}=\left(\frac{a x}{a+b x}\right)^{2}
x^{3} \frac{d^{2} y}{d x^{2}}=\left(x \frac{d x}{d x}-y\right)^{2}
Question 24
यदि(If) x=cosθ , y=\sin ^{3} \theta , दिखाएँ कि(show that) y\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=3 \sin ^{2} \theta\left(5 \cos ^{2} \theta-1\right)Sol :
x=cosθ , y=\sin ^{3} \theta
Differentiating w.r.t x
\frac{d x}{d \theta}=-\sin \theta..(i)
\frac{d y}{d \theta}=3 \sin^2 \theta \cos \theta..(ii)
समीकरण (ii) मे (i) से भाग देने पर
\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{3\sin^2 \theta \cos \theta}{-\sin \theta}
\frac{d y}{d x}=-3 \sin \theta \cos \theta
Again ,Differentiating w.r.t x
\left.\frac{d^{2} y}{dx^{2}}=-3 \Big[\cos \theta \cdot \frac{d \theta}{d x} \cdot \cos \theta+\sin \theta(-\sin \theta) \frac{d \theta}{d x}\right]
\frac{d^{2} y}{d x^{2}}=-3\left[\cos ^{2} \theta-\sin ^{2} \theta\right] \frac{d \theta}{d x}
\frac{d^{2} y}{d x^{2}}=-3\left[\cos^{2} \theta-\sin^{2} \theta\right] \frac{1}{-\sin \theta}
\frac{d^{2} y}{d x^{2}}=\frac{3}{\sin \theta}\left(\cos^{2} \theta-\sin^2 \theta\right)
L.H.S
y \frac{d^{2} y}{d x}+\left(\frac{d y}{d x}\right)^{2}
=\sin ^{3} \theta \frac{3}{\sin \theta}\left(\cos ^{2} \theta-\operatorname{sin}^{2} \theta\right)+(-3 \sin \theta \cos \theta)^{2}
=3 \sin ^{2} \theta-\cos ^{2} \theta-3 \sin ^{2} \theta \cdot \sin ^{2} \theta+9 \sin ^{2} \theta \cos ^{2} \theta
=3 \sin ^{2} \theta \cos ^{2} \theta-3 \sin ^{2} \theta\left(1-\cos ^{2} \theta\right) + 9 \sin ^{2} \theta \cos^2 \theta
=3 \sin ^{2} \theta \cos ^{2} \theta-3 \sin ^{2} \theta+3 \sin ^{2} \theta \cos ^{2} \theta+9\sin^2 \theta \cos ^2 \theta
=15 \mathrm{sin}^{2} \theta \cos^2 \theta-3\sin^2 \theta
=3 \sin ^{2} \theta\left[5\cos^{2} \theta-1\right]
No comments:
Post a Comment