Exercise 12.1
Question 13
यदि(If) y=\sin ^{-1} x , दिखाएँ कि (show that) \left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=0Sol :
y=\sin ^{-1} x
Differentiating w.r.t x
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}
Again , Differentiating w.r.t x
\frac{d^{2} y}{d x^{2}}=\frac{0 \cdot \sqrt{1-x^{2}}-1 \cdot \frac{1}{2 \sqrt{1-x^{2}}} \times(-2x)}{(\sqrt{1-x^{2}})^{2}}
\frac{d^{2} y}{d x^{2}}=\frac{\frac{x}{\sqrt{1-x^{2}}}}{1-x^{2}}
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=\frac{x}{\sqrt{1-x^{2}}}
\left(1-x^{2}\right) \frac{d^{2} y}{d x}=x \cdot \frac{d y}{d x}
\left(1-x^{2}\right) \frac{d^{2} y}{dx^{2}}-x \frac{d y}{d x}=0
Question 14
यदि(If) y=\left(\tan ^{-1} x\right)^{2} , दिखाएँ कि (show that) \left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}-2=0Sol :
y=\left(\tan ^{-1} x\right)^{2}
Differentiating w.r.t x
y_{1}=2\left(\tan ^{-1} x\right) \times \frac{1}{1+x^{2}}
y_{1}=\frac{2 \tan ^{-1} x}{1+x^{2}}
2 \tan ^{-1} x=\left(1+x^{2}\right) y_{1}
Again , Differentiating w.r.t x
y_{2}=\frac{2 \times \frac{1}{1+x^{2}} \times\left(1-x^{2}\right)-2 \tan ^{-1} x \times 2 x}{\left(1+x^{2}\right)^{2}}
y_{2}=\frac{2-4 x \tan ^{-1} x}{\left(1+x^{2}\right)^{2}}
\left(1+x^{2}\right)^{2} \cdot y_{2}=2-2 x \cdot 2 \tan ^{-1} x
\left(x^{2}+1\right)^{2} y_{2}=2-2 x\left(1+x^{2}\right) y_{1}
\left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}-2=0
Question 15
यदि (If) y=3cos(log x)+4sin(log x) दिखाएँ कि (show that) x^{2} y_{2}+x y_{1}+y=0Sol :
y=3cos(log x)+4sin(log x)
Differentiating w.r.t x
y_{1}=-3 \cdot \sin (\log x) \times \frac{1}{x}+4 \cos (\log x) \times \frac{1}{x}
y_{1}=\frac{1}{x}[-3 \sin (\log x)+4 \cos (\log x)]
Again , Differentiating w.r.t x
y_{2}=\frac{-1}{x^{2}}\left[-3 \sin\left(\log x\right)+4 \cos \left(\log x\right)\right]+\frac{1}{x}\left[\frac{-3cos(log x)}{x}+\frac{4\{-sin(\log x)\}}{x}\right]
y_{2}=-\frac{1}{x^{2}}\left[-3 \sin \left(\log {x}\right)+4 \cos (\log x)\right]+\frac{1}{x^{2}}\left[-3 \cos \left(\log x\right)-4sin(\log x)\right]
x^{2} y_{2}=-\left[-3 \sin \left(\log x\right)+4 \cos (\log x)\right]-[3cos(\log x)+4\sin (\log x)]
x^{2} y_{2}=-x y_{1}-y
x^{2} y_{2}+x y_{1}+y_{2}=0
No comments:
Post a Comment