Exercise 9.1
(Q1-Q4)
(Q5-Q8)
(Q9-Q12)
(Q13-Q16)
(Q17-Q20)
(Q21-Q24)
(Q25-Q28)
(Q29-Q33)
Question 9
सिद्ध करें कि f(x)=x^{n}, x=0 पर संतत है, जहाँ n एक धन पूर्णांक है।
[Prove that the function
f(x)=x^{n}, x=0 is continuous at x=0 , where n is a positive integer.]
Sol :
x=0 ,
f (0)=
=0^{n} =0
f (x), x=0 पर परिभाषित है ।
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{n}
=0^{n}
=0
\lim _{x \rightarrow 0} f(x)=f(0)
f (x) ,x=0 पर संतता(continuous) है
Question 10
क्या f(x)=x^{2}-\sin x+5 से परिभाषित फलन x=\pi पर सतत है ?
Is the function defined by
f(x)=x^{2}-\sin x+5 continuous at
x=\pi ?
Sol:
At x = 𝜋
L.H.S
\lim _{x \rightarrow \pi^{-}} f(x)=\lim _{x \rightarrow \pi}\left(x^{2}-\sin x+5\right)
=\lim _{h \rightarrow 0}\left[(\pi-h)^{2}-\sin(\pi-h)+5\right]
=\lim _{h \rightarrow 0}\left[x^{2}-2 \pi h+h^{2}-\sin h+5\right]
= \pi^{2}-2 \pi(0)+0^{2}-\sin \theta+5
=\pi^{2}+5
R.H.L
\lim _{x \rightarrow \pi^{+}} f(x)=\lim _{x \rightarrow \pi}\left(x^{2}-\sin x+5\right)
=\lim _{h \rightarrow 0}\left[(\pi+h)^{2}-\sin (\pi+h)+5\right]
=\lim _{h \rightarrow 0}\left[(\pi+h)^{2}-\sin (\pi+h)+5\right]
=\lim _{h \rightarrow 0}\left(\pi^{2}+2 \pi h+h^{2}+\operatorname{sin} h+5\right)
= \pi^{2}+2 \pi(0)+0^{2}+\sin 0+5
=\pi^{2}+5
f(\pi)=\pi^{2}-\sin \pi+5
=\pi^{2}+5
∴
\lim _{x \rightarrow \pi^{-}} f(x)=\lim _{x \rightarrow \pi^{+}} f(x)=f(x)
f (x) , x=π पर संतता(continuous) है
Question 11
(i) f (x) का x=0 पर सांतत्य की जाँच करें, जहाँ
[Test the continuity of the following functions at indicated points]
(i) f(x)=\left\{\begin{array}{cl}\frac{x^{2}-1}{x-1}, x \neq 1\left\{\begin{array}{l}x<1 \\ x>1\\\end{array}\right.\\ 2, x=1\end{array}\right.
Sol :
At x=1
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}\left(\frac{x^{2}-1}{x-1}\right)
=\lim _{x \rightarrow 1}\left(\frac{x^{2}-1^{2}}{x-1}\right)
={\lim}_{x\rightarrow1} \frac{(x-1)(x+1)}{x-1}
R.H.L
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left(\frac{x^{2}-1}{x-1}\right)
=1+1
=2
f (1)=2
∴
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)
f (x) ,x=1 संतता(continuous) है
(ii) f(x)=\left\{\begin{array}{cc}\frac{x^{2}-x-6}{x-3}, x \neq 3 \left\{\begin{array}{c}x<3 \\x>3\end{array}\right. \\ 5, x=3\end{array}\right.
Sol :
x=3
L.H.L
\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3}\left(\frac{x^{2}-x-6}{x-3}\right)
=\lim _{x \rightarrow 3}\left(\frac{x^{2}-3 x+2 x-6}{x-3}\right)
=\lim _{x \rightarrow 3}\left(\frac{x(x-3)+2(x-3)}{x-3}\right)
=\lim _{x \rightarrow 3} \frac{(x-3)(x+2)}{x-3}
=3+2
=5
R.H.L
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3}\left(\frac{x^{2}-x-6}{x-3}\right)
=5
f (3)=5
∴
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=f(3)
f (x) ,x=3 संतता(continuous) है
(iii) f(x)=\left\{\begin{array}{cl}\frac{1-\cos x}{x^{2}},x \neq 0\left\{\begin{array}{l}x<0 \\ x>0\end{array}\right. \\ 1, x=0\end{array}\right.
Sol :
L.H.L
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x^{2}}\right)
=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{x}{2}}{\frac{x^{2}}{4}} \times \frac{1}{4}
=\frac{1}{4}\times {2}\lim_{x\rightarrow0} \frac{\sin ^{2} \frac{x}{2}}{\frac{x^{2}}{4}}
=\frac{1}{2} \lim _{x \rightarrow 0}\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2}
=\frac{1}{2} \lim _{x \rightarrow 0}\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2}
=\frac{1}{2}(1)^{2}=\frac{1}{2}
R.H.L
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x^{2}}\right)=\frac{1}{2}
f (0)=1
\therefore \lim _{x \rightarrow 0^{-}} f(x)\neq\lim _{x \rightarrow 0^{+}} f(x)\neq f(0)
f (x) ,x=0 असंतता(discontinuous) है
(iv) f(x)=\left\{\begin{array}{cl}\frac{|x-a|}{x-a},x \neq a\left\{\begin{array}{l}x<a \\ x>a\end{array}\right. \\ 1, x=a\end{array}\right.
Sol :
At x=a
L.H.L
\lim _{x \rightarrow a^{-}} f(x)=\lim_{x\rightarrow a^{-}} \frac{|x-a|}{x-a}
=\lim _{x \rightarrow 0} \frac{-(x-a)}{x-a}
=-1
R.H.L
\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} \frac{|x-a|}{x-a}
=\lim_{x\rightarrow a} \frac{x-a}{x-a}
=1
∴
\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x\rightarrow a^+} f(x)
f (x) ,x=a असंतता (discontinuous) है
(v) f(x)=\left\{\begin{array}{cc}\frac{\sin 3 x}{x}, & x \neq 0\left\{\begin{array}{l}x<0 \\ x>0\end{array}\right. \\ 1, & x=0\end{array}\right.
Sol :
At x=0
L.H.L
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0} \frac{\sin3 x}{x}
=\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \times 3
=1×3
=3
R.H.L
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}
=\lim_{x\rightarrow {0}} \frac{\sin 3 x}{3 x} \times 3
=1×3
=3
f (0)=1
∴
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x) \neq f(0)
f (x) ,x=0 असंतता (discontinuous) है
No comments:
Post a Comment