Processing math: 0%

KC Sinha Mathematics Solution Class 12 Chapter 9 संतता या सांतत्य (continuity) Exercise 9.1 (Q9-Q12)

Exercise 9.1











Question 9

सिद्ध करें कि f(x)=x^{n}, x=0 पर संतत है, जहाँ n एक धन पूर्णांक है।

[Prove that the function f(x)=x^{n}, x=0 is continuous at x=0 , where n is a positive integer.]
Sol :
x=0 ,

f(0)==0^{n}=0

f(x), x=0 पर परिभाषित है ।

\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{n}
=0^{n}
=0

\lim _{x \rightarrow 0} f(x)=f(0)

f(x) ,x=0 पर संतता(continuous) है


Question 10

क्या f(x)=x^{2}-\sin x+5 से परिभाषित फलन x=\pi पर सतत है ?
Is the function defined by f(x)=x^{2}-\sin x+5 continuous at x=\pi ?
Sol:
At x = 𝜋

L.H.S

\lim _{x \rightarrow \pi^{-}} f(x)=\lim _{x \rightarrow \pi}\left(x^{2}-\sin x+5\right)

=\lim _{h \rightarrow 0}\left[(\pi-h)^{2}-\sin(\pi-h)+5\right]

=\lim _{h \rightarrow 0}\left[x^{2}-2 \pi h+h^{2}-\sin h+5\right]

= \pi^{2}-2 \pi(0)+0^{2}-\sin \theta+5

=\pi^{2}+5

R.H.L

\lim _{x \rightarrow \pi^{+}} f(x)=\lim _{x \rightarrow \pi}\left(x^{2}-\sin x+5\right)

=\lim _{h \rightarrow 0}\left[(\pi+h)^{2}-\sin (\pi+h)+5\right]

=\lim _{h \rightarrow 0}\left[(\pi+h)^{2}-\sin (\pi+h)+5\right]

=\lim _{h \rightarrow 0}\left(\pi^{2}+2 \pi h+h^{2}+\operatorname{sin} h+5\right)

= \pi^{2}+2 \pi(0)+0^{2}+\sin 0+5

=\pi^{2}+5

f(\pi)=\pi^{2}-\sin \pi+5

=\pi^{2}+5

\lim _{x \rightarrow \pi^{-}} f(x)=\lim _{x \rightarrow \pi^{+}} f(x)=f(x)

f(x) , x=π पर संतता(continuous) है


Question 11

(i) f(x) का x=0 पर सांतत्य की जाँच करें, जहाँ
[Test the continuity of f(x) at x=0 where]

\begin{matrix}f(x)=\frac{x e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}, x \neq 0\left\{\begin{array}{l}x<0 \\ x>0\end{array}\right.\\=0,x=0\end{matrix}
Sol :
At x=0

L.H.L
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}\left(\frac{x e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}\right)

=\lim _{h \rightarrow 0}\left(\frac{(0-h) \cdot e^{\frac{1}{0-h}}}{1+e^{\frac{1}{0-h}}}\right)

=\lim _{h \rightarrow 0} \frac{-h \cdot e^{-\frac{1}{h}}}{1+e^{-\frac{1}{h}}}

=-0 \cdot \frac{e^{-\infty}}{1+e^{-\infty}}=0

R.H.S
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0}\left(\frac{x \cdot e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}\right)

=\lim _{h \rightarrow 0}\left(\frac{(0+h) \cdot e^{\frac{1}{0+h}}}{1+e^{\frac{1}{0+h}}}\right)

={\lim}_{h \rightarrow 0} \frac{h \cdot e^{\frac{1}{h}}}{1+e^{\frac{1}{h}}}

=0 \cdot \frac{e^{\infty}}{1+e^{\infty}}=0

f(0)=0

\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}}f(x)=f(0)

f(x),x=0 पर संतता(continuous) है

(ii) माना कि [Let ]\begin{aligned} f(x) &=\frac{e^{\frac{1}{x}}-1}{1+e^{\frac{1}{x}}}\text{when }x\neq0 \left\{\begin{matrix}x<0\\x>0\end{matrix}\right. \\ &=0 ,\text{when }x=0 \end{aligned}

दिखाएँ कि f(x), x=0 पर असंतत है।
[Show that f(x) is discontinuous at x=0]
Sol :
At x=0 ,

L.H.L

\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}\left(\frac{e^{\frac{1}{x}}-1}{1+e^{\frac{1}{x}}}\right)

=\lim _{h \rightarrow 0}\left(\frac{e^{\frac{1}{0-h}-1}}{1+e^{\frac{1}{0-h}}}\right)

=\lim _{h \rightarrow 0} \frac{e^{\frac{-1}{h}}-1}{1+e^{-\frac{1}{h}}}

=\frac{e^{-\infty}-1}{1+e^{-\infty}}

=\frac{\frac{1}{e^{\infty}}-1}{1+\frac{1}{e^{\infty}}}

=\frac{\frac{1}{\infty}-1}{1+\frac{1}{\infty}}

=\frac{0-1}{1+0}=\frac{-1}{1}

=-1

R.H.L
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0}\left(\frac{e^{\frac{1}{x}-1}}{1+e^{\frac{1}{x}}}\right)

=\lim _{x \rightarrow 0}\left(\frac{e^{\frac{1}{x}-1}}{e^{\frac{1}{x}+1}}\right)

=\lim _{x \rightarrow 0} \frac{e^{\frac{1}{x}}\left(1-e^{-\frac{1}{x}}\right)}{e^{\frac{1}{x}}\left(1+e^{\frac{-1}{x}}\right)}


=\lim _{h \rightarrow 0}\left(\frac{1-e^{-\frac{1}{0+h}}}{1+e^{-\frac{1}{0+h}}}\right)

=\lim _{h \rightarrow 0}\left(\frac{1-e^{-\frac{1}{h}}}{1+e^{-\frac{1}{h}}}\right)

=\frac{1-e^{-\infty}}{1+e^{-\infty}}

=\frac{1-0}{1+0}=\frac{1}{1}=1

\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x)

f(x), x=0  पर असंतता(discontinuous) है

Question 12

निम्नीलिखत फलनों के निदिष्ट बिन्दुओं पर सांतत्य की जाँच करें ।
[Test the continuity of the following functions at indicated points]
(i) f(x)=\left\{\begin{array}{cl}\frac{x^{2}-1}{x-1}, x \neq 1\left\{\begin{array}{l}x<1 \\ x>1\\\end{array}\right.\\ 2, x=1\end{array}\right.
Sol :
At x=1

\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}\left(\frac{x^{2}-1}{x-1}\right)

=\lim _{x \rightarrow 1}\left(\frac{x^{2}-1^{2}}{x-1}\right)

={\lim}_{x\rightarrow1} \frac{(x-1)(x+1)}{x-1}

R.H.L
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left(\frac{x^{2}-1}{x-1}\right)

=1+1
=2

f(1)=2

\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)

f(x) ,x=1 संतता(continuous) है

(ii) f(x)=\left\{\begin{array}{cc}\frac{x^{2}-x-6}{x-3}, x \neq 3 \left\{\begin{array}{c}x<3 \\x>3\end{array}\right. \\ 5, x=3\end{array}\right.
Sol :
x=3

L.H.L
\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3}\left(\frac{x^{2}-x-6}{x-3}\right)

=\lim _{x \rightarrow 3}\left(\frac{x^{2}-3 x+2 x-6}{x-3}\right)

=\lim _{x \rightarrow 3}\left(\frac{x(x-3)+2(x-3)}{x-3}\right)

=\lim _{x \rightarrow 3} \frac{(x-3)(x+2)}{x-3}

=3+2
=5

R.H.L
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3}\left(\frac{x^{2}-x-6}{x-3}\right)

=5

f(3)=5

\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=f(3)

f(x) ,x=3  संतता(continuous) है

(iii) f(x)=\left\{\begin{array}{cl}\frac{1-\cos x}{x^{2}},x \neq 0\left\{\begin{array}{l}x<0 \\ x>0\end{array}\right. \\ 1, x=0\end{array}\right.
Sol :
L.H.L
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x^{2}}\right)

=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{x}{2}}{\frac{x^{2}}{4}} \times \frac{1}{4}

=\frac{1}{4}\times {2}\lim_{x\rightarrow0} \frac{\sin ^{2} \frac{x}{2}}{\frac{x^{2}}{4}}

=\frac{1}{2} \lim _{x \rightarrow 0}\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2}

=\frac{1}{2} \lim _{x \rightarrow 0}\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2}

=\frac{1}{2}(1)^{2}=\frac{1}{2}

R.H.L
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x^{2}}\right)=\frac{1}{2}

f(0)=1

\therefore \lim _{x \rightarrow 0^{-}} f(x)\neq\lim _{x \rightarrow 0^{+}} f(x)\neq f(0)

f(x) ,x=0 असंतता(discontinuous) है

(iv) f(x)=\left\{\begin{array}{cl}\frac{|x-a|}{x-a},x \neq a\left\{\begin{array}{l}x<a \\ x>a\end{array}\right. \\ 1, x=a\end{array}\right.
Sol :
At x=a

L.H.L
\lim _{x \rightarrow a^{-}} f(x)=\lim_{x\rightarrow a^{-}} \frac{|x-a|}{x-a}

=\lim _{x \rightarrow 0} \frac{-(x-a)}{x-a}

=-1

R.H.L
\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} \frac{|x-a|}{x-a}

=\lim_{x\rightarrow a} \frac{x-a}{x-a}

=1

\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x\rightarrow a^+} f(x)

f(x) ,x=a असंतता (discontinuous) है

(v) f(x)=\left\{\begin{array}{cc}\frac{\sin 3 x}{x}, & x \neq 0\left\{\begin{array}{l}x<0 \\ x>0\end{array}\right. \\ 1, & x=0\end{array}\right.
Sol :
At x=0

L.H.L
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0} \frac{\sin3 x}{x}

=\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \times 3

=1×3
=3

R.H.L
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}

=\lim_{x\rightarrow {0}} \frac{\sin 3 x}{3 x} \times 3

=1×3
=3

f(0)=1

\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x) \neq f(0)

f(x) ,x=0  असंतता (discontinuous) है


No comments:

Post a Comment

Contact Form

Name

Email *

Message *