Exercise 9.1
Question 17
(यदि) If \begin{aligned} f(x) &=\frac{1}{2}-x, 0 \leq x<\frac{1}{2} \\ &=\frac{1}{2}, x=\frac{1}{2} \\ &=\frac{3}{2}-x, \frac{1}{2}<x \leq 1 \end{aligned}
तो f(x) के सांतत्य की जाँच करें ।
[examine the continuity of
f(x)]
Sol :
At
x=\frac{1}{2}
L.H.L
\lim _{x \rightarrow \frac{1}{2}^-}=\lim _{x \rightarrow \frac{1}{2}}\left(\frac{1}{2}-x\right)
=\frac{1}{2}-\frac{1}{2}=0
R.H.L
\lim _{x \rightarrow \frac{1}{2}^+} f(x)=\lim _{x \rightarrow \frac{1}{2}}\left(\frac{3}{2}-x\right)
=\frac{3}{2}-\frac{1}{2}=\frac{2}{2}
=1
∴
\lim _{x \rightarrow \frac{1}{2}^{-}}f(x) \neq \lim _{x \rightarrow \frac{1}{2}+} f(x)
f(x),
x=\frac{1}{2} पर असंतता है ।
Question 18
यदि (If )
\begin{aligned} f(x) &=\frac{x^{2}-4 x+3}{x^{2}-1}, x \neq 1 \left\{\begin{array}{l}x<1 \\ x>1\end{array}\right.\\ &=2, \quad x=1 \end{aligned}तो f(x) के सांतत्य की जाँच करें ।
तो
f(x) के सांतत्यता की जाँच करें
test the continuity of
f(x)
Sol :
At x=2 ,
L.H.L
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x-2}\right)
=\lim _{x \rightarrow 2}\left(\frac{x^{2}-2^{2}}{x-2}\right)
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x-2}\right)
=\lim _{x \rightarrow 2}\left(\frac{x^{2}-2^{2}}{x-2}\right)
=\lim _{x \rightarrow 2}\left(\frac{(x-2)(x+2)}{x-2}\right)
=2+2
=4
R.H.L
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2}
=4
R.H.L
\lim _{x \rightarrow 2}+f(x)=\lim _{x \rightarrow 2}(x+1)
=2+1
=3
\therefore \lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x)
f(x), x=2 पर असंतता(discontinuous) है
Question 17
(यदि) If \begin{aligned} f(x) &=\frac{1}{2}-x, 0 \leq x<\frac{1}{2} \\ &=\frac{1}{2}, x=\frac{1}{2} \\ &=\frac{3}{2}-x, \frac{1}{2}<x \leq 1 \end{aligned}
तो f(x) के सांतत्य की जाँच करें ।
[examine the continuity of
f(x)]
Sol :
At
x=\frac{1}{2}
L.H.L
\lim _{x \rightarrow \frac{1}{2}^-}=\lim _{x \rightarrow \frac{1}{2}}\left(\frac{1}{2}-x\right)
=\frac{1}{2}-\frac{1}{2}=0
R.H.L
\lim _{x \rightarrow \frac{1}{2}^+} f(x)=\lim _{x \rightarrow \frac{1}{2}}\left(\frac{3}{2}-x\right)
=\frac{3}{2}-\frac{1}{2}=\frac{2}{2}
=1
∴
\lim _{x \rightarrow \frac{1}{2}^{-}}f(x) \neq \lim _{x \rightarrow \frac{1}{2}+} f(x)
f(x),
x=\frac{1}{2} पर असंतता है ।
Question 18
यदि (If )
\begin{aligned} f(x) &=\frac{x^{2}-4 x+3}{x^{2}-1}, x \neq 1 \left\{\begin{array}{l}x<1 \\ x>1\end{array}\right.\\ &=2, \quad x=1 \end{aligned}तो f(x) के सांतत्य की जाँच करें ।
तो
f(x) के सांतत्यता की जाँच करें
test the continuity of
f(x)
Sol :
At x=2 ,
L.H.L
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x-2}\right)
=\lim _{x \rightarrow 2}\left(\frac{x^{2}-2^{2}}{x-2}\right)
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x-2}\right)
=\lim _{x \rightarrow 2}\left(\frac{x^{2}-2^{2}}{x-2}\right)
=\lim _{x \rightarrow 2}\left(\frac{(x-2)(x+2)}{x-2}\right)
=2+2
=4
R.H.L
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2}
=4
R.H.L
\lim _{x \rightarrow 2}+f(x)=\lim _{x \rightarrow 2}(x+1)
=2+1
=3
\therefore \lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x)
f(x), x=2 पर असंतता(discontinuous) है
No comments:
Post a Comment