KC Sinha Mathematics Solution Class 12 Chapter 9 संतता या सांतत्य (continuity) Exercise 9.1 (Q17-Q20)
Exercise 9.1
Question 17
(यदि) If $\begin{aligned} f(x) &=\frac{1}{2}-x, 0 \leq x<\frac{1}{2} \\ &=\frac{1}{2}, x=\frac{1}{2} \\ &=\frac{3}{2}-x, \frac{1}{2}<x \leq 1 \end{aligned}$
तो f(x) के सांतत्य की जाँच करें ।
[examine the continuity of
f(x)]
Sol :
At $x=\frac{1}{2}$
L.H.L
$\lim _{x \rightarrow \frac{1}{2}^-}=\lim _{x \rightarrow \frac{1}{2}}\left(\frac{1}{2}-x\right)$
$=\frac{1}{2}-\frac{1}{2}=0$
R.H.L
$\lim _{x \rightarrow \frac{1}{2}^+} f(x)=\lim _{x \rightarrow \frac{1}{2}}\left(\frac{3}{2}-x\right)$
$=\frac{3}{2}-\frac{1}{2}=\frac{2}{2}$
=1
∴$\lim _{x \rightarrow \frac{1}{2}^{-}}f(x) \neq \lim _{x \rightarrow \frac{1}{2}+} f(x)$
f(x),$x=\frac{1}{2}$ पर असंतता है ।
Question 18
यदि (If )$\begin{aligned} f(x) &=\frac{x^{2}-4 x+3}{x^{2}-1}, x \neq 1 \left\{\begin{array}{l}x<1 \\ x>1\end{array}\right.\\ &=2, \quad x=1 \end{aligned}$
तो f(x) के सांतत्य की जाँच करें ।
[examine the continuity of
f(x)]
Sol :
At x=1 ,
L.H.L
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}\left(\frac{x^{2}-4 x+3}{x^{2}-1}\right)$
$=\lim _{x \rightarrow 1}\left(\frac{x^{2}-3 x-2 x+3}{x^{2}-1^2}\right)$
$=\lim _{x \rightarrow 1}\left[\frac{x(x-3)-1(x-3)}{(x-1)(x+1)}\right]$
$=\lim _{x \rightarrow 1} \frac{(x-3)(x-1)}{(x-1)(x+1)}$
$=\frac{1-3}{1+1}$
$=\frac{-2}{2}$
=-1
R.H.L
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left(\frac{x^{2}-4 x+3}{x^{2}-1}\right)$
=-1
f(1)=2
f(x),x=1 पर असंतता है ।
Question 19
If $f(x)=\left\{\begin{array}{lr}x^2,0\leq x<1\\2x-1,1\leq x<2\\x+3,x\geq 2\end{array}\right.$
तो f(x) के सांतत्य की जाँच करें ।
examine the continuity of
f(x)
Sol :
At x=1
L.H.L
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}\left(x^{2}\right)$
$=1^{2}$
=1
R.H.L
$\lim_{x\rightarrow1^+}f(x)=\lim _{x \rightarrow 1}(2 x-1)$
=2(1)-1
=1
f(1)=2(1)-1
=2-1
=1
∴$\lim _{x \rightarrow 1^{-}} f(x)=\lim_{x \rightarrow 1^+}f{(x)}$=
f(1)
f(x),x=1 पर संतता है
Question 19
If $f(x)=\left\{\begin{array}{lr}x^2,0\leq x<1\\2x-1,1\leq x<2\\x+3,x\geq 2\end{array}\right.$
examine the continuity of
f(x)
Sol :
At x=2,
L.H.L
$\lim_{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2}(2 x-1)$
=2(2)-1
=4-1
=3
R.H.L
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2}(x+3)$
=2+3
=5
∴$\lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x)$
f(x), x=2 पर असंतता है ।
Question 20
(यदि) If $f(x)=\frac{x^{2}-4}{x-2}, \quad 0<x<2$
=x+1 , 2≤x≤5
तो
f(x) के सांतत्यता की जाँच करें
test the continuity of
f(x)
Sol :
At x=2 ,
L.H.L
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x-2}\right)$
$=\lim _{x \rightarrow 2}\left(\frac{x^{2}-2^{2}}{x-2}\right)$
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x-2}\right)$
$=\lim _{x \rightarrow 2}\left(\frac{x^{2}-2^{2}}{x-2}\right)$
$=\lim _{x \rightarrow 2}\left(\frac{(x-2)(x+2)}{x-2}\right)$
=2+2
=4
R.H.L
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2}$
=4
R.H.L
$\lim _{x \rightarrow 2}+f(x)=\lim _{x \rightarrow 2}(x+1)$
=2+1
=3
$\therefore \lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x)$
f(x), x=2 पर असंतता(discontinuous) है
Question 17
(यदि) If $\begin{aligned} f(x) &=\frac{1}{2}-x, 0 \leq x<\frac{1}{2} \\ &=\frac{1}{2}, x=\frac{1}{2} \\ &=\frac{3}{2}-x, \frac{1}{2}<x \leq 1 \end{aligned}$
तो f(x) के सांतत्य की जाँच करें ।
[examine the continuity of
f(x)]
Sol :
At $x=\frac{1}{2}$
L.H.L
$\lim _{x \rightarrow \frac{1}{2}^-}=\lim _{x \rightarrow \frac{1}{2}}\left(\frac{1}{2}-x\right)$
$=\frac{1}{2}-\frac{1}{2}=0$
R.H.L
$\lim _{x \rightarrow \frac{1}{2}^+} f(x)=\lim _{x \rightarrow \frac{1}{2}}\left(\frac{3}{2}-x\right)$
$=\frac{3}{2}-\frac{1}{2}=\frac{2}{2}$
=1
∴$\lim _{x \rightarrow \frac{1}{2}^{-}}f(x) \neq \lim _{x \rightarrow \frac{1}{2}+} f(x)$
f(x),$x=\frac{1}{2}$ पर असंतता है ।
Question 18
यदि (If )$\begin{aligned} f(x) &=\frac{x^{2}-4 x+3}{x^{2}-1}, x \neq 1 \left\{\begin{array}{l}x<1 \\ x>1\end{array}\right.\\ &=2, \quad x=1 \end{aligned}$
तो f(x) के सांतत्य की जाँच करें ।
[examine the continuity of
f(x)]
Sol :
At x=1 ,
L.H.L
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}\left(\frac{x^{2}-4 x+3}{x^{2}-1}\right)$
$=\lim _{x \rightarrow 1}\left(\frac{x^{2}-3 x-2 x+3}{x^{2}-1^2}\right)$
$=\lim _{x \rightarrow 1}\left[\frac{x(x-3)-1(x-3)}{(x-1)(x+1)}\right]$
$=\lim _{x \rightarrow 1} \frac{(x-3)(x-1)}{(x-1)(x+1)}$
$=\frac{1-3}{1+1}$
$=\frac{-2}{2}$
=-1
R.H.L
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left(\frac{x^{2}-4 x+3}{x^{2}-1}\right)$
=-1
f(1)=2
f(x),x=1 पर असंतता है ।
Question 19
If $f(x)=\left\{\begin{array}{lr}x^2,0\leq x<1\\2x-1,1\leq x<2\\x+3,x\geq 2\end{array}\right.$
तो f(x) के सांतत्य की जाँच करें ।
examine the continuity of
f(x)
Sol :
At x=1
L.H.L
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}\left(x^{2}\right)$
$=1^{2}$
=1
R.H.L
$\lim_{x\rightarrow1^+}f(x)=\lim _{x \rightarrow 1}(2 x-1)$
=2(1)-1
=1
f(1)=2(1)-1
=2-1
=1
∴$\lim _{x \rightarrow 1^{-}} f(x)=\lim_{x \rightarrow 1^+}f{(x)}$=
f(1)
f(x),x=1 पर संतता है
Question 19
If $f(x)=\left\{\begin{array}{lr}x^2,0\leq x<1\\2x-1,1\leq x<2\\x+3,x\geq 2\end{array}\right.$
examine the continuity of
f(x)
Sol :
At x=2,
L.H.L
$\lim_{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2}(2 x-1)$
=2(2)-1
=4-1
=3
R.H.L
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2}(x+3)$
=2+3
=5
∴$\lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x)$
f(x), x=2 पर असंतता है ।
Question 20
(यदि) If $f(x)=\frac{x^{2}-4}{x-2}, \quad 0<x<2$
=x+1 , 2≤x≤5
तो
f(x) के सांतत्यता की जाँच करें
test the continuity of
f(x)
Sol :
At x=2 ,
L.H.L
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x-2}\right)$
$=\lim _{x \rightarrow 2}\left(\frac{x^{2}-2^{2}}{x-2}\right)$
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x-2}\right)$
$=\lim _{x \rightarrow 2}\left(\frac{x^{2}-2^{2}}{x-2}\right)$
$=\lim _{x \rightarrow 2}\left(\frac{(x-2)(x+2)}{x-2}\right)$
=2+2
=4
R.H.L
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2}$
=4
R.H.L
$\lim _{x \rightarrow 2}+f(x)=\lim _{x \rightarrow 2}(x+1)$
=2+1
=3
$\therefore \lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x)$
f(x), x=2 पर असंतता(discontinuous) है
No comments:
Post a Comment