KC Sinha Mathematics Solution Class 12 Chapter 9 संतता या सांतत्य (continuity) Exercise 9.1 (Q25-Q28)
Exercise 9.1
(Q1-Q4)
(Q5-Q8)
(Q9-Q12)
(Q13-Q16)
(Q17-Q20)
(Q21-Q24)
(Q25-Q28)
(Q29-Q33)
Question 25
माना कि (Let)
\begin{aligned} f(x) &=x+1,(\text { if }) x \leq 1 \\ &=3-a x^{2},(\text { if }) x>1 \end{aligned} a के किस मान के लिए फलन
f (x) संतत है।
[for what value of a will the function
f (x) be continuous?]
Sol :
At x=1,
L.H.L
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}(x+1)
=1+1
=2
R.H.L
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left(3-a x^{2}\right)
=3-a(1)^{2}
=3-a
∵
f (x),x=1 पर संतता है
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)
2=3-a
a=3-2
a=1
Question 26
a और b का निर्धारण करें ताकि फलन
f जो निम्न प्रकार प्रदत्त है,
[Determine a and be so that the function
f given by]
\begin{aligned} f(x) &=\frac{1-\sin ^{2} x}{3 \cos ^{2} x}, x<\frac{\pi}{2} \\ &=a, \quad x=\frac{\pi}{2} \\ &=\frac{b(1-\sin x)}{(\pi-2 x)^{2}}, x>\frac{\pi}{2} \end{aligned} x=\frac{\pi}{2} पर संतत है
[is continuous at
x=\frac{\pi}{2} ]
Sol :
At
x=\frac{\pi}{2}
L.H.L
\lim _{x \rightarrow \frac{\pi}{2}-} f(x)=\lim _{x \rightarrow \frac{\pi}{2}^-}\frac{1-sin^2x}{3\cos^2 x}
=\lim _{h \rightarrow 0} \frac{1-\sin ^{2}\left(\frac{\pi}{2}-h\right)}{3 \cos ^{2}\left(\frac{\pi}{2}-h\right)}
=\lim _{h \rightarrow 0} \frac{l-\cos ^{2} h}{3 \sin ^{2} h}
=\lim _{h \rightarrow 0} \frac{1-\cos ^{2} h}{3 \sin ^{2} h}
=\lim _{h \rightarrow 0} \frac{\sin ^{2} h}{3 \sin^ 2 h}
=\frac{1}{3}
R.H.L
\lim _{x \rightarrow \frac{\pi}{2}^+}f(x)=\lim _{x \rightarrow \frac{\pi}{2}^+} \frac{b(1-\sin x)}{(\pi-2 x)^{2}}
=\lim _{h \rightarrow 0} \frac{b\left[1-\sin \left(\frac{\pi}{2}+h\right)\right]}{\left[\pi-2\left(\frac{\pi}{2}+h\right)\right]^{2}}
=\lim _{h \rightarrow 0} \frac{b[1-\cos h]}{[ \pi-\pi-2 h]^{2}}
=\lim _{h \rightarrow 0} \frac{b \cdot 2 \sin^2 \frac{h}{2}}{(-2 h)^{2}}
=\lim _{h \rightarrow 0} \frac{2 b \sin^2 \frac{h}{2}}{2^{4} h^{2}}
=\frac{b}{2} \lim _{h \rightarrow 0} \frac{\sin 2^{2} \frac{h}{2}}{\frac{h^{2}}{4}} \times \frac{1}{4}
=\frac{b}{8} \lim _{h \rightarrow 0}\left(\frac{\sin \frac{h}{2}}{\frac{h}{2}}\right)^{2}
=\frac{b}{8}(1)^{2}=\frac{b}{8}
f\left(\frac{\pi}{2}\right)=a
∵
f (x),
x=\frac{\pi}{2} पर <to be added>
\lim _{x \rightarrow \frac{\pi}{2}^-}f(x)=\lim _{2 \rightarrow \frac{\pi}{2}+} f(x)=f\left(\frac{\pi}{2}\right)
\frac{1}{3}=\frac{b}{8}=a
\begin{array}{r|l}\frac{1}{3}=9 &\frac{b}{8}=\frac{1}{3} \\ \therefore a=1&b=\frac{8}{3}\end{array}
Question 27
यदि (If)
f(x)=\frac{\sqrt{1+p x}-\sqrt{1-p x}}{x},-1 \leq x<0
\quad=\frac{2 x+1}{x-1}, 0 \leq x<1 अन्तराल [-1,1] में संतत है, तो p निकालें ।
[is continuous in the interval [-1,1], find p.]
Sol :
At x=0,
L.H.L
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0} \frac{\sqrt{1+p x}-\sqrt{1-p x}}{x}
=\lim _{x \rightarrow 0} \frac{\sqrt{1+p{x}}-\sqrt{1-p{x}}}{x} \times \frac{\sqrt{1+px}+\sqrt{1-px}}{\sqrt{1+p{x}}+\sqrt{1-p{x}}}
=\lim _{x \rightarrow 0} \frac{(\sqrt{1+px})^{2}-(\sqrt{1-px})^{2}}{x[\sqrt{1+px}+\sqrt{1-px}]}
\left.=\lim _{x \rightarrow 0} \frac{1+p x-1+p x}{x[\sqrt{1+p x}+\sqrt{1-p x}]}\right.
=\lim _{x \rightarrow 0} \frac{2 P x}{x[\sqrt{1+p x}+\sqrt{1-p x}]}
=\frac{2 p}{\sqrt{1+p(0)}+\sqrt{1-p(0)}}
=\frac{2 p}{1+1}=\frac{2f}{2}=p
R.H.L
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} \frac{2 x+1}{x-1}
=\frac{2(0)+1}{0-1}
=\frac{1}{-1}=-1
∵f(x),x=0 [-1,1] पर संतता है ।
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)
p=-1
Question 28
माना (Let)
\begin{aligned}f(x)&=-2\sin x,\text{(if) }x \leq-\frac{\pi}{2}\\&=A \sin x+B,\text{(if) }-\frac{\pi}{2}<x<\frac{\pi}{2}\\&=\cos x,\text{(if) }x \geq \frac{\pi}{2}\end{aligned}
A और B ज्ञात करें जो f (x) को \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] में संतत बना दें । (find A and B so as to make f(x) continuous in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] )
Sol :
[a,b]
\lim _{x \rightarrow a^{+}} f(x)=f(a)
\lim_{x\rightarrow b^-}f(x)=f{(b)}
At
x=-\frac{\pi}{2}
R.H.L
\lim _{x \rightarrow-\frac{\pi^{+}}{2}} f(x)=\lim _{x \rightarrow-\frac{\pi}{2}}(A \sin x+B)
=A \sin \left(-\frac{\pi}{2}\right)+B
=-A+B
f\left(-\frac{\pi}{2}\right)=-2 \sin \left(-\frac{\pi}{2}\right)
=2 \sin \frac{\pi}{2}
=2(1)=2
∵
f (x),
\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] पर संतता है ।
\lim _{x \rightarrow-\frac{\pi}{2}^+}f(x)=f\left(-\frac{\pi}{2}\right)
-A+B=2..(i)
At
x=\frac{\pi}{2} ,
L.H.L
\lim_{x\rightarrow \frac{\pi}{2}^-} f(x)=\lim _{x \rightarrow \frac{\pi}{2}}(A \sin x+B)
=A\sin\frac{\pi}{2}+B
=A+B
f\left(\frac{\pi}{2}\right)=\cos \frac{\pi}{2}=0
∵
f(x),\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] पर संतता है ।
\lim _{x \rightarrow \frac{\pi}{2}-} f(x)=f\left(\frac{\pi}{2}\right)
\lim _{x \rightarrow \frac{\pi}{2}^-} f(x)=f\left(\frac{\pi}{2}\right)
A+B=0..(ii)
(i) तथा (ii) को जोड़ने पर,
\begin{aligned}-A+B &=2 \\ A+B &=0 \\\hline 2 B &=2 \end{aligned}
B=1
B का मान (iii) मे रखने पर ,
A+B=0
A+1=0
A=-1
∴A=-1 , B=1
No comments:
Post a Comment