Loading web-font TeX/Math/Italic

KC Sinha Mathematics Solution Class 12 Chapter 11 अवकलन (Differentiation) Exercise 11.5 (Q1-Q3)

Exercise 11.5










Question 1

\frac{d y}{d x} ज्ञात करे जब
[Find \frac{d y}{d x} when]

(i) x=acosθ , y=asinθ
Sol :
Differentiate w.r.t θ

\frac{d x}{d \theta}=-a \sin \theta..(i)

\frac{d y}{d \theta}=a \cos \theta..(ii)

समीकरण (i) मे (ii) से भाग देने पर ,

\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a \cos \theta}{- a \sin \theta}

=-cotθ

(ii) x=acosθ , y=bcosθ
Sol :
Differentiate w.r.t θ

\frac{d x}{d \theta}=-a \sin \theta..(i)

\frac{d y}{d \theta}=-b \sin \theta..(ii)

समीकरण (i) मे (ii) से भाग देने पर ,

\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-b \sin \theta}{- a \sin \theta}

\frac{d y}{d x}=\frac{b}{a}


Question 2

\frac{d y}{d x} ज्ञात करे जब
[Find \frac{d y}{d x} when]

(i) x=at2,y=2at
Sol :
Differentiate w.r.t t

\frac{d x}{d t}=2 a t..(i)

\frac{d y}{d t}=2 a..(ii)

समीकरण (ii) मे (i) से भाग देने पर ,

\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2a}{2at}

\frac{d y}{d x}=\frac{1}{t}



(ii) x=4t , y=\frac{4}{t}
Sol :
Differentiate w.r.t t

\frac{d x}{d t}=4..(i)

\frac{d y}{d t}=-\frac{4}{t^{2}}..(ii)

समीकरण (ii) मे (i) से भाग देने पर ,

\dfrac{\frac{d y}{d t}}{\frac{dx}{dt}}=\dfrac{\frac{-4}{t^2}}{4}

\frac{d y}{d x}=\frac{-1}{t^{2}}


Question 3

\frac{d y}{d x} ज्ञात करे जब
[Find \frac{d y}{d x} when]

(i) x=sint,y=cos2t
Sol :
Differentiate w.r.t t

\frac{d x}{d t}=\cos \theta..(i)


\frac{d y}{d t}=-\sin 2 t \times 2

\frac{dy}{d t}=-2 .\sin 2t

समीकरण (ii) मे (i) से भाग देने पर ,

\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{-2 \cdot \cos t}{\cos t}

\frac{d y}{d x}=\frac{-2 \times 2\sin t \cos t}{\cos t}

⇒-4sint

(ii) x=asecθ,y=btanθ
Sol :

Differentiating w.r.t θ

\frac{d x}{d \theta}=a \sec \theta \tan \theta..(i)

\frac{d y}{d \theta}=b \sec ^{2} \theta..(ii)

समीकरण (ii) मे (i) से भाग देने पर ,

\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{b \sec ^{2} \theta}{a \sec \theta \tan \theta}

\frac{d y}{d x}=\frac{b}{a}\times \frac{1}{\cos \theta}

=\frac{b}{a} \operatorname{cosec} \theta


No comments:

Post a Comment

Contact Form

Name

Email *

Message *