KC Sinha Mathematics Solution Class 12 Chapter 11 अवकलन (Differentiation) Exercise 11.5 (Q16-Q18)
[Find the derivative of \frac{x}{\sin x} w.r.t sin x]
Sol :
माना u=\frac{x}{\sin x} , v=sinx
Differentiating w.r.t x
\frac{d u}{d x}=\frac{1 \sin x-x \cdot \cos x}{\sin ^{2} x}
\frac{d u}{d x}=\frac{\sin x-x \cos x}{\sin ^{2} x}..(i)
v=sinx
Differentiating w.r.t x
\frac{d v}{d x}=\cos x..(i)
समीकरण (i) मे (ii) से भाग देने पर ,
\frac{\frac{d y}{d x}}{\frac{dv}{dx}}=\frac{\frac{\sin x-x \cos x}{\sin ^{2} x}}{\cos x}
\frac{du}{d v}=\frac{\sin x-x \cos x}{\sin ^{2} x \cos x}
माना u=\frac{x}{\sin x} , v=sinx
Differentiating w.r.t x
\frac{d u}{d x}=\frac{1 \sin x-x \cdot \cos x}{\sin ^{2} x}
\frac{d u}{d x}=\frac{\sin x-x \cos x}{\sin ^{2} x}..(i)
v=sinx
Differentiating w.r.t x
\frac{d v}{d x}=\cos x..(i)
समीकरण (i) मे (ii) से भाग देने पर ,
\frac{\frac{d y}{d x}}{\frac{dv}{dx}}=\frac{\frac{\sin x-x \cos x}{\sin ^{2} x}}{\cos x}
\frac{du}{d v}=\frac{\sin x-x \cos x}{\sin ^{2} x \cos x}
Question 17
\sqrt{\sin \left(1+x^{2}\right)^{2}} का 1+x2 के सापेक्ष अवकलन गुणांक ज्ञात करे ।[Find the d.c. of $\sqrt{\sin \left(1+x^{2}\right)^{2}} w.r.t 1+x^2$]
Sol :
माना u=\sqrt{\sin \left(1+x^{2}\right)^{2}} ,v=1+x2
Differentiating w.r.t x
\frac{d u}{d x}=\frac{1}{2 \sqrt{\sin \left(1+x^{2}\right)^{2}}} \times \cos \left(1+x^{2}\right)^{2} \times 2\left(1+x^{2}\right) \cdot 2 x
\frac{d u}{d x}=\frac{2 x\left(1+x^{2}\right) \cdot \cos \left(1+x^{2}\right)^{2}}{\sqrt{\sin \left(1+x^{2}\right)^{2}}}..(i)
अब,
v=1+x2
Differentiating w.r.t x
\frac{d v}{d x}=2 x..(ii)
समीकरण (i) मे (ii) से भाग देने पर ,
\frac{\frac{d u}{d v}}{\frac{dv}{dx}}=\frac{\frac{2x\left(1+x^{2}\right) \cos \left(1+x^{2}\right)^{2}}{\sqrt{\sin \left(1+x^{2}\right)^{2}}}}{2x}
\frac{d u}{d v}=\frac{\left(1+t^{2}\right) \cdot \cos \left(1+x^{2}\right)^{2}}{\sqrt{\sin \left(1+x^{2}\right)^{2}}}
माना u=\sqrt{\sin \left(1+x^{2}\right)^{2}} ,v=1+x2
Differentiating w.r.t x
\frac{d u}{d x}=\frac{1}{2 \sqrt{\sin \left(1+x^{2}\right)^{2}}} \times \cos \left(1+x^{2}\right)^{2} \times 2\left(1+x^{2}\right) \cdot 2 x
\frac{d u}{d x}=\frac{2 x\left(1+x^{2}\right) \cdot \cos \left(1+x^{2}\right)^{2}}{\sqrt{\sin \left(1+x^{2}\right)^{2}}}..(i)
अब,
v=1+x2
Differentiating w.r.t x
\frac{d v}{d x}=2 x..(ii)
समीकरण (i) मे (ii) से भाग देने पर ,
\frac{\frac{d u}{d v}}{\frac{dv}{dx}}=\frac{\frac{2x\left(1+x^{2}\right) \cos \left(1+x^{2}\right)^{2}}{\sqrt{\sin \left(1+x^{2}\right)^{2}}}}{2x}
\frac{d u}{d v}=\frac{\left(1+t^{2}\right) \cdot \cos \left(1+x^{2}\right)^{2}}{\sqrt{\sin \left(1+x^{2}\right)^{2}}}
Question 18
\tan ^{-1} \frac{2 x}{1-x^{2}} का \cos ^{-1} \frac{1-x^{2}}{1+x^{2}} के सापेक्ष अवकलन गुणांक निकालें जहाँ |x|<1[Find the d.c. of \tan ^{-1} \frac{2 x}{1-x^{2}} w.r.t \cos ^{-1} \frac{1-x^{2}}{1+x^{2}} where |x|<1]
Sol :
माना u=\tan ^{-1} \frac{2 x}{1-x^{2}} v=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}
u=2tan-1x,v=2tan-1x
Differentiating w.r.t x
\frac{d u}{d x}=\frac{2}{1+x^{2}}..(i)
\frac{d v}{dx}=\frac{2}{1+t^{2}}..(ii)
समीकरण (i) मे (ii) से भाग देने पर ,
\frac{\frac{d u}{d x}}{\frac{d v}{dx}}=\frac{\frac{2}{1+x^{2}}}{\frac{2}{1+x^{2}}}
\frac{d u}{d v}=1
माना u=\tan ^{-1} \frac{2 x}{1-x^{2}} v=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}
u=2tan-1x,v=2tan-1x
Differentiating w.r.t x
\frac{d u}{d x}=\frac{2}{1+x^{2}}..(i)
\frac{d v}{dx}=\frac{2}{1+t^{2}}..(ii)
समीकरण (i) मे (ii) से भाग देने पर ,
\frac{\frac{d u}{d x}}{\frac{d v}{dx}}=\frac{\frac{2}{1+x^{2}}}{\frac{2}{1+x^{2}}}
\frac{d u}{d v}=1
No comments:
Post a Comment