Exercise 11.5
Question 4
\frac{d y}{d x} ज्ञात करे जब[Find \frac{d y}{d x} when]
Sol :
Differentiating w.r.t θ
\frac{d x}{d \theta}=a(1-\cos \theta)
\frac{d x}{d \theta}=a \cdot 2 \sin ^{2} \frac{\theta}{2}
\frac{d x}{d \theta}=2 a \sin ^{2} \frac{\theta}{2}..(i)
अब , y=(1-cosθ)
Differentiating w.r.t θ
\frac{d y}{d \theta}=a \sin \theta=a \cdot 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}
\frac{d y}{d \theta}=2 a \sin \frac{\theta}{2} \cos \frac{\theta}{2}..(ii)
समीकरण (ii) मे (i) से भाग देने पर ,
\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{2 a \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 a \sin^2 \frac{\theta}{2}}
\frac{d y}{d x}=\cot \frac{\theta}{2}
(ii) x=a(θ-sinθ),y=a(1+cosθ)
Sol :
Question 5
\frac{d y}{d x} ज्ञात करे जब[Find \frac{d y}{d x} when]
Sol :
Differentiating w.r.t θ
\frac{d x}{d \theta}=\cos \theta..(i)
\frac{d y}{d \theta}=1-\sin \theta..(ii)
समीकरण (ii) मे (i) से भाग देने पर ,
\frac{\frac{d y}{d \theta}}{\frac{dx}{d\theta}}=\frac{1-\sin \theta}{\cos \theta}
\frac{d y}{d x}=\frac{1-\sin \theta}{\cos \theta}
(ii) x=10(t-sint),y=12(1-cost),-\frac{\pi}{2}<t \leq \frac{\pi}{2}
Sol :
Differentiating w.r.t t
\frac{d x}{d t}=10(1-\cos t)
\frac{d x}{d t}=10 \times 2 \sin ^{2} \frac{t}{2}
\frac{d x}{d t}=20 \sin^2 \frac{t}{2}
अब , y=12(1-cost)
Differentiating w.r.t t
\frac{d y}{d t}=12 \sin t=12 \times 2 \sin \frac{t}{2} \cos \frac{t}{2}
\frac{d y}{d t}=24 \sin \frac{t}{2} \cos \frac{t}{2}..(ii)
समीकरण (ii) मे (i) से भाग देने पर ,
\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{24 \sin \frac{t}{2} \cos \frac{t}{2}}{20 \sin ^{2} \frac{t}{2}}
\frac{dy}{d t}=\frac{6}{5} \cos \frac{t}{2}
Question 6
\frac{d y}{d x} ज्ञात करे जब[Find \frac{d y}{d x} when]
Sol :
Differentiating w.r.t θ
\frac{d x}{d \theta}=-3 \sin \theta-3 \cos ^{2} \theta(-\sin \theta)
\frac{d x}{d \theta}=-3 \sin \theta+3 \cos ^{2} \theta \sin \theta
\frac{d x}{d \theta}=-3 \sin \theta\left(1-\cos^{2} \theta\right)
\frac{d x}{d t}=-3 \sin^{3} \theta..(i)
अब, y=3sinθ-sin3θ
Differentiating w.r.t θ
\frac{d y}{d \theta}=3 \cos \theta-3 \sin ^{2} \theta \cdot \cos \theta
=3cosθ(1-sin2θ)
\frac{d y}{d \theta}=3 \cos ^{3} \theta..(ii)
समीकरण (ii) मे (i) से भाग देने पर ,
\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{3 \cos ^{3} \theta}{-3 \sin^3 \theta}
\frac{d y}{d x}=-\cot ^{3} \theta
(ii) x=cosθ-cos2θ,y=sinθ-sin3θ
Sol :
Differentiating w.r.t θ
\frac{d x}{d \theta}=-\sin \theta+\sin 2 \theta \cdot 2
\frac{d x}{d \theta}=2 \sin 2 \theta-\sin \theta..(i)
अब , y=sinθ--sin3θ
Differentiating w.r.t θ
\frac{d y}{d t}=\cos \theta-3 \sin ^{2} \theta \cdot \cos \theta
\frac{d y}{d \theta}=\cos \theta\left(1-3 \sin ^{2} \theta\right)..(ii)
समीकरण (ii) मे (i) से भाग देने पर ,
\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\cos \theta\left(1-3 \sin ^{2} \theta\right)}{2\sin 2\theta-\sin \theta}
\frac{d y}{d x}=\frac{\cos \theta\left(1-3 \sin ^{2} \theta\right)}{2 \sin 2 \theta-\sin \theta}
No comments:
Post a Comment