Processing math: 2%

KC Sinha Mathematics Solution Class 12 Chapter 11 अवकलन (Differentiation) Exercise 11.5 (Q7-Q9)

Exercise 11.5










Question 7

\frac{d y}{d x} ज्ञात करे जब
[Find \frac{d y}{d x} when]

(i) x=\sqrt{1+t^{2}}, y=\sqrt{1-t^{2}}x=t+\frac{1}{t}, y=t-\frac{1}{t}
Sol :
x=\sqrt{1+t^{2}}

Differentiating w.r.t t

\frac{d x}{d t}=\frac{1}{2 \sqrt{1+t^2}} \times 2t

\frac{d x}{d t}=\frac{t}{\sqrt{1+t^{2}}}..(i)

अब, y=\sqrt{1-t^{2}}

Differentiating w.r.t t

\frac{d y}{d t}=\frac{1}{2 \sqrt{1-t^{2}}} \times(-2 t)

\frac{d y}{d t}=\frac{-t}{\sqrt{1-t^{2}}}..(ii)

समीकरण (ii) मे (i) से भाग देने पर ,

\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{-t}{\sqrt{1-t^{2}}}}{\frac{t}{\sqrt{1+t^{2}}}}

\frac{d y}{d x}=-\frac{\sqrt{1+t^{2}}}{\sqrt{1-t^{2}}}



(ii) x=t+\frac{1}{t}, y=t-\frac{1}{t}
Sol :
x=t+\frac{1}{t}

Differentiating w.r.t t

\frac{d x}{d t}=1-\frac{1}{t^{2}}

\frac{d x}{d t}=\frac{t^{2}-1}{t^{2}}..(i)

अब ,y=t-\frac{1}{t}

Differentiating w.r.t t

\frac{dy}{d t}=1+\frac{1}{t^{2}}

\frac{d y}{d t}=\frac{t^{2}+1}{t^{2}}..(ii)

समीकरण (ii) मे (i) से भाग देने पर ,

\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{t^{2}+1}{t^{2}}}{\frac{t^{2}-1}{t^{2}}}

\frac{d y}{d x}-\frac{t^{2}+1}{t^{2}-1}


Question 8

\frac{d y}{d x} ज्ञात करे जब
[Find \frac{d y}{d x} when]

(i) x=et+sint,t=logt
Sol :
Differentiating w.r.t t

\frac{d x}{d t}=e^{t}+\cos t..(i)

\frac{d y}{d t}=\frac{1}{t}..(ii)

समीकरण (ii) मे (i) से भाग देने पर ,

\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{1}{t}}{e^{t}+\cos t}

\frac{d_{y}}{d x}=\frac{1}{t\left(e^{t}+\cos t\right)}


(ii) x=a\left(\cos t+\log \tan \frac{t}{2}\right), y=a \sin t
Sol :
Differentiating w.r.t t

\frac{d x}{d t}=a\left(-\sin t+\frac{1}{\tan \frac{t}{2}} \times \sec ^{2} \frac{t}{2} \times \frac{1}{2}\right)

\frac{d x}{d t}=a\left(-\sin t+\frac{1}{\frac{\sin t / 2}{\cos t / 2}} \times \frac{1}{\cos ^{2} \frac{t}{2}} \times \frac{1}{2}\right)

\frac{d x}{d t}=a\left(-\sin t+\frac{1}{2 \sin \frac{t}{2} \cos \frac{t}{2}}\right)

\frac{d x}{d t}=a\left(-\sin t+\frac{1}{\sin t}\right)

\frac{d x}{d t}=a\left(\frac{-\sin ^{2} t+1}{\sin t}\right)

\frac{d x}{d t}=a \frac{\cos ^{2} t}{\sin t}..(i)

अब,y=asint

Differentiating w.r.t t

\frac{d y}{d t}=a \cos t..(ii)

समीकरण (ii) मे (i) से भाग देने पर ,

\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{a \cos t}{\frac{a \cos^{2} t}{sin t}}

\frac{d y}{d x}=\tan t


Question 9

\frac{d y}{d x} ज्ञात करे जब
[Find \frac{d y}{d x} when]

x=\frac{2 t}{1+t^{2}}, y=\frac{1-t^{2}}{1+t^{2}}

Differentiating w.r.t t

\frac{d x}{d t}=\frac{2 \cdot\left(1+t^{2}\right)-2 t(2 t)}{\left(1+t^{2}\right)^{2}}

\frac{d x}{d t}=\frac{2+2 t^{2}-4 t^{2}}{\left(1+t^{2}\right)^{2}}

\frac{d x}{d t}=\frac{2-2 t^{2}}{\left(1+t^{2}\right)^{2}}

\frac{d x}{d t}=\frac{2\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}}..(i)

अब, y=\frac{1-t^{2}}{1+t^{2}}

Differentiating w.r.t t

\frac{d y}{d t}=\frac{-2 t\left(1+t^{2}\right)-\left(1-t^{2}\right) \cdot 2 t}{\left(1+t^{2}\right)^{2}}

=\frac{-2 t-2 t^{3}-2 t+2 t^{3}}{\left(1+t^{2}\right)^{2}}

\frac{d y}{d t}=-\frac{4 t}{\left(1+t^{2}\right)^{2}}..(ii)

समीकरण (ii) मे (i) से भाग देने पर ,

\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{-4 t}{\left(1+t^{2}\right)^{2}}}{\frac{2\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}}}

\frac{d y}{d x}=\frac{-2 t}{1-t^{2}}


No comments:

Post a Comment

Contact Form

Name

Email *

Message *