Exercise 11.5
Question 10
यदि(If) x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}} , सिद्ध करे कि (prove that) \frac{d y}{d x}+\frac{x}{y}=0Sol :
x=\frac{1-t^{2}}{1+t^{2}}
Differentiating w.r.t t
\frac{d x}{d t}=\frac{-2 t\left(1+t^{2}\right)-\left(1-t^{2}\right) \cdot 2t}{\left(1+t^{2}\right)^{2}}
=\frac{-2 t-2 t^{3}-2 t+2t^{3}}{\left(1+t^{2}\right)^{2}}
\frac{d x}{d t}=\frac{-4 t}{\left(1+t^{2}\right)^{2}}..(i)
अब , y=\frac{2 t}{1+t^{2}}
Differentiating w.r.t t
\frac{d y}{d t}=\frac{2\left(1+t^{2}\right)-2 t \cdot 2 t}{\left(1+t^{2}\right)^{2}}
=\frac{2+2 t^{2}-4 t^{2}}{\left(1+t^{2}\right)^{2}}
\frac{d y}{d t}=\frac{2-2 t^{2}}{\left(1+t^{2}\right)^{2}}
\frac{d y}{d t}=\frac{2\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}}..(ii)
समीकरण (ii) मे (i) से भाग देने पर ,
\frac{\frac{d{y}}{d t}}{\frac{dx}{d t}}=\dfrac{\frac{2(1-t^2)}{(1+t^2)^2}}{\frac{-4t}{(1+t^2)^2}}
\frac{d y}{d x}=-\frac{1-t^{2}}{2 t}
\frac{d y}{d x}=-\frac{x}{y}
\frac{dy}{d x}+\frac{x}{y}=0
Question 11
यदि(If) y=acos2θ,x=bsin2θ , सिद्ध करे कि (prove that) \frac{d y}{d x}+\frac{a}{b}=0Sol :
y=acos2θ
Differentiating w.r.t θ
\frac{d y}{d \theta}=2 a \cos \theta \cdot(-\sin \theta)
\frac{d y}{d \theta}=-a \sin 2 \theta..(i)
अब , x=bsin2θ
Differentiating w.r.t θ
\frac{d x}{d \theta}=2b \sin \theta \cdot \cos \theta
\frac{d x}{d \theta}=b\sin2 \theta
समीकरण (i) मे (ii) से भाग देने पर ,
\frac{\frac{d y}{d\theta}}{\frac{d x}{d\theta}}=\frac{-a \sin 2\theta}{b \sin 2 \theta}
\frac{dy}{dx}+\frac{a}{b}=0
Question 12
t=\frac{\pi}{3} पर \frac{d y}{d x} निकले जब (Find \frac{d y}{d x} at t=\frac{\pi}{3} when) x=a(cost+tsint) and y=a(sint-tcost)Sol :
x=a(cost+tsint)
Differentiating w.r.t t
\frac{d x}{d t}=a(-\sin t+1.\sin t+t \cos t)
\frac{d x}{d t}=a t \cos t..(i)
अब,
y=a(sint-tcost)
Differentiating w.r.t t
\frac{d y}{d t}=a[\cos t-1 \cdot \cos t-t(-\sin t)]
\frac{d y}{d t}=a t \sin t..(ii)
समीकरण (ii) मे (i) से भाग देने पर ,
\frac{\frac{dy}{d t}}{\frac{d x}{dt}}=\frac{at\sin t}{a t \cos t}
\frac{d y}{d x}=\tan t
At t=\frac{\pi}{3}
\left(\frac{d y}{d x}\right)_{t=\frac{\pi}{3}}=\tan \frac{\pi}{3}=\sqrt{3}
No comments:
Post a Comment