KC Sinha Mathematics Solution Class 10 Chapter 5 Triangles Exercise 5.3


Exercise 5.1
Exercise 5.2
Exercise 5.3
Exercise 5.4
Exercise 5.5

Exercise 5.3


Question 1 

State which of the following pairs of triangles are similar. Write the similarity criterion used and write the pairs of similar triangles in symbolic form (all lengths of sides are in cm).
(i) 


(ii) 


(iii) 


(iv) 


(v) 


(vi) 


(vii) 

Sol :
(i) In ΔABC,
A = 70° and B = 50°
And we know that, sum of the angles = 180°
⇒∠A + B +C = 180°
70° + 50° +C = 180°
 120° +C = 180°
 C = 60°

And In ΔDEF
F = 70° and E = 50°
And we know that, sum of the angles = 180°
⇒∠D + E +F = 180°
⇒∠D + 50° + 70° = 180°
 D = 60°
Yes,ΔABC ~ ΔDEF [by AAA similarity criterion]

(ii) In ΔABC and ΔPQR
Here,$\frac{A B}{P Q}=\frac{2}{4}=\frac{1}{2}$, $\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{3}{6}=\frac{1}{2}$, $\frac{A C}{P R}=\frac{4}{8}=\frac{1}{2}$

As,$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$
So, ΔABC ~ ΔPQR [by SSS similarity criterion]

(iii) InΔMNL and ΔPQR
NML = PQR = 70°
$\frac{\mathrm{MN}}{\mathrm{PQ}}=\frac{2.5}{6}=\frac{25}{6 \times 10}$
$=\frac{5}{6 \times 2}=\frac{5}{12}$
and $\frac{M L}{Q R}=\frac{5}{10}=\frac{1}{2}$
$\Rightarrow \frac{\mathrm{MN}}{\mathrm{PQ}} \neq \frac{\mathrm{ML}}{\mathrm{QR}}$

No, the two triangles are not similar.

(iv) In ΔPQR and ΔLMN
PQR = LNM = 50°
$\frac{\mathrm{PQ}}{\mathrm{LN}}=\frac{4}{8}=\frac{1}{2}$
and $\frac{\mathrm{QR}}{\mathrm{MN}}=\frac{10}{20}=\frac{1}{2}$
$\Rightarrow \frac{\mathrm{PQ}}{\mathrm{LN}}=\frac{\mathrm{QR}}{\mathrm{MN}}$
ΔPQR ~ ΔLMN [by SAS similarity criterion]

(v) In ΔLMP and ΔDEF
Here,$\frac{\mathrm{LM}}{\mathrm{DE}}=\frac{2.7}{4}=\frac{1}{2}$ 
$\frac{\mathrm{LM}}{\mathrm{DE}}=\frac{2.7}{4}=\frac{1}{2}$, $\frac{\mathrm{LP}}{\mathrm{DF}}=\frac{3}{6}=\frac{1}{2}$, $\frac{M P}{E F}=\frac{2}{5}$

As$\frac{A B}{P Q} \neq \frac{B C}{Q R} \neq \frac{A C}{P R}$
So, no two triangles are not similar

(vi) In ΔABC and ΔPQR
A = Q = 85°
B = P = 60°
and C =R = 35°
So, ΔPQR ~ ΔLMN [by AAA similarity]

(vii) In ΔABC and ΔPQR
Here,$\frac{A B}{Q R}=\frac{2}{4}=\frac{1}{2}$,$\frac{B C}{P R}=\frac{2.5}{5}=\frac{1}{2}$, $\frac{A C}{P Q}=\frac{3}{6}=\frac{1}{2}$
As,$\frac{A B}{Q R}=\frac{B C}{P R}=\frac{A C}{P Q}$
So, ΔABC ~ ΔPQR [by SSS similarity criterion]

Question 2 

If diagonals AC and BD of trapezium ABCD with AB || CD intersect each other at 0 and AB= 18 cm, DC = 30 cm, OB =y cm, OD= 10 cm, find y.








Sol :
Given: ABCD is a trapezium with AB || CD
and diagonals AB and CD intersecting at O
To find: y
Firstly, we prove that ΔOAB ~ ΔODC
Let ΔOAB and ΔODC
AOB = COD [vertically opposite angles]
OBA = ODC [AB || CD with BD as transversal.
alternate angles are equal]
OAB = OCD [AB || CD with BD as transversal.
alternate angles are equal]

 ΔOAB ~ ΔODC [by AAA similarity]
Since triangles are similar. Hence corresponding sides are proportional.
$\Rightarrow \frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}=\frac{\mathrm{AB}}{\mathrm{DC}}$
$\Rightarrow \frac{\mathrm{OB}}{\mathrm{OD}}=\frac{\mathrm{AB}}{\mathrm{DC}}$
$\Rightarrow \frac{y}{10}=\frac{18}{30}$
 y = 6cm

Question 3 

In the given figure BC = 5 cm, AC = 5.5 cm and AB= 4.6 cm. P and Q are points on AB and AC respectively such that PQ || BC. If PQ = 2.5 cm, find other sides of ΔAPQ.









Sol :
Given: PQ || BC
To find: AP and AQ
Since, PQ || BC, AB is transversal, then,
ΔAPQ = ΔABC [by corresponding angles]
Since, PQ || BC, AC is transversal, then,
ΔAPQ = ΔABC [by corresponding angles]
In ΔAPQ andΔABC
APQ = ABC
AQP = ACB

 ΔAPQ  ΔABC [by AAA similarity]
Since, the corresponding sides of similar triangles are proportional
$\therefore \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{\mathrm{AQ}}{\mathrm{AC}}$
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{PQ}}{\mathrm{BC}}$
$\Rightarrow \frac{\mathrm{AP}}{4.6}=\frac{2.5}{5}$
$\Rightarrow A P=\frac{2.5 \times 4.6}{5}$
AP = 2.3

Now, taking $\frac{P Q}{B C}=\frac{A Q}{A C}$
$\Rightarrow \frac{2.5}{5}=\frac{A Q}{5.5}$
$\Rightarrow A Q=\frac{2.5 \times 5.5}{5}$
AQ = 2.75
Therefore, AP = 2.3cm and AQ = 2.75cm

Question 4 

In the given figure ΔABR ~ ΔPQR, if PQ = 30 cm, AR = 45 cm, AP = 72 cm and QR = 42 cm, find PR and BR.









Sol :
Given: ΔABR ~ ΔPQR
As, ΔABR and ΔPQR are similar
$\therefore \frac{A R}{P R}=\frac{B R}{Q R}=\frac{A B}{Q P}$
$\Rightarrow \frac{45}{\mathrm{AP}-\mathrm{AR}}=\frac{\mathrm{BR}}{42}=\frac{\mathrm{AB}}{30}$
$\Rightarrow \frac{45}{72-45}=\frac{B R}{42}$
$\Rightarrow \frac{45}{27}=\frac{B R}{42}$
BR = 70cm
and PR = AP – AR = 72 – 45 = 27cm

Question 5

In the given figure, QA and PB are perpendiculars to AB. If AO = 10 cm, BO = 6 cm and PB = 9 cm, find AQ.










Sol :
Let us take ΔOAQ and ΔOBP
AOQ = BOP (vertically opposite angles)
OAQ = OBP (each 90°)
 ΔOAQ ~ΔOBP (by AA similarity criterion)
Given: AO = 10 cm, BO = 6 cm and PB = 9 cm
As, ΔOAQ ~ΔOBP
$\therefore \frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{AQ}}{\mathrm{BP}}$
$\Rightarrow \frac{10}{6}=\frac{A Q}{9}$
AQ = 15cm

Question 6 

In the given figure ΔACB ~ ΔAPQ, if BC = 8 cm, PQ = 4 cm, BA = 6.5 cm, AP= 2.8 cm, Find CA and AQ.










Sol :
Given: ΔACB ~ ΔAPQ
As, ΔACB and ΔAPQ are similar
$\therefore \frac{\mathrm{CA}}{\mathrm{AP}}=\frac{\mathrm{BA}}{\mathrm{AQ}}=\frac{\mathrm{CB}}{\mathrm{QP}}$
$\Rightarrow \frac{\mathrm{CA}}{2.8}=\frac{6.5}{\mathrm{AQ}}=\frac{8}{4}$
$\Rightarrow \frac{\mathrm{CA}}{2.8}=\frac{6.5}{\mathrm{AQ}}=2$
Taking $\frac{\mathrm{CA}}{2.8}=2$

CA = 5.6cm
Now, taking $\frac{6.5}{A Q}=2$
AQ =3.25cm

Question 7 

In the given figure, XY || BC. Find the length of XY, given BC = 6 cm.









Sol :
Given: XY || BC
To find: XY
Since, XY || BC, AB is transversal, then,
ΔAXY = ΔABC [by corresponding angles]
Since, XY || BC, AC is transversal, then,
ΔAYX = ΔABC [by corresponding angles]
In ΔAXY andΔABC
AXY = ABC
AYX = ACB
 ΔAXY  ΔABC [by AA similarity]
Since, triangles are similar, hence corresponding sides will be proportional
$\therefore \frac{A X}{A B}=\frac{X Y}{B C}=\frac{A Y}{A C}$
$\Rightarrow \frac{A X}{A B}=\frac{X Y}{B C}$
$\Rightarrow \frac{1}{A X+X B}=\frac{X Y}{6}$
$\Rightarrow \frac{1}{1+3}=\frac{X Y}{6}$
$\Rightarrow \frac{1}{4}=\frac{X Y}{6}$
$\Rightarrow \mathrm{XY}=\frac{6}{4}$
XY = 1.5
Therefore, XY= 1.5cm

Question 8 

The perimeters of two similar triangles, ABC and PQR (ΔABC~ ΔPQR) are respectively 72 cm and 48 cm. If PQ = 20 cm, find AB.
Sol :
Given: ΔABC~ΔPQR, PQ =20cm
And perimeter of ΔABC andΔPQR are 72cm and 48cm respectively.
As, ΔABC ~ΔPQR
$\therefore \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$ (corresponding sides are proportional)
$\Rightarrow \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$$=\frac{A B+B C+A C}{P Q+Q R+P R}$
$\Rightarrow \frac{A B+B C+A C}{P Q+Q R+P R}=\frac{A B}{P Q}$
$\Rightarrow \frac{\text { Perimeter of } A B C}{\text { Perimeter of PQR }}=\frac{A B}{P Q}$
$\Rightarrow \frac{72}{48}=\frac{A B}{20}$
$\Rightarrow A B=\frac{72 \times 20}{48}$
AB = 30cm

Question 9 

In the given figure, if PQ || RS, prove that ΔPOQ ~ Δ SOR.










Sol :
Given: PQ || RS
To Prove: ΔPOQ ~ΔSOR
Let us takeΔPOQ andΔSOR
OPQ = OSR (as PQ || RS, Alternate angles)
POQ = ROS (vertically opposite angles)
OQP = ORS (as PQ || RS, Alternate angles)
 ΔPOQ ~ΔSOR (by AAA similarity criterion)
Hence Proved

Question 10 

In the given figure, if A = C, then prove that Δ AOB ~ Δ COD












Sol :
Given: A = C
To Prove: ΔAOB ~ΔCOD
Let us take ΔAOB andΔCOD
A = C (given)
AOB = COD (vertically opposite angles)
 ΔAOB ~ΔCOD (by AA similarity criterion)
Hence Proved

Question 11 

In the given figure DB  BC, DE  AB and AC  BC, prove that ΔBDE ~ΔABC.









Sol :
We have, DB 丄 BC and AC 丄 BC
B + C = 90° + 90°
 B + C = 180°
 BD || AC
⇒∠EBD = CAB (alternate angles)
Let us take ΔBDE andΔABC
BED = ACB (each 90°)
EBD = CAB (alternate angles)
 ΔBDE ~ΔABC (by AA similarity criterion)
Hence Proved

Question 12 

In the given figure, 1 = 2 and $\frac{A C}{B D}=\frac{C B}{C E}$, prove that ΔACB ~ ΔDCE








Sol :
We have, $\frac{A C}{B D}=\frac{C B}{C E}$
$\Rightarrow \frac{A C}{C B}=\frac{B D}{C E}$
$\Rightarrow \frac{A C}{C B}=\frac{C D}{C E}$ (, BD = DC as 1 = 2) …(i)
Also, 1 = 2
i.e. DBC = ACB
 ΔACB ~ ΔDCE (by SAS similarity criterion)
Hence Proved

Question 13 

In an isosceles ΔABC with AC = BC, the base AB is produced both ways to P and Q such that AP x BQ = AC2. Prove that : ΔACP ~ ΔBQC









Sol :
Given ABC is an isosceles triangle and AC = BC
 AC = BC
⇒∠CAB = CBA
180° – CAB = 180° – CBA
 CAP = CBQ
Also, AP x BQ = AC2
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{AC}}=\frac{\mathrm{AC}}{\mathrm{BQ}}$
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{AC}}=\frac{\mathrm{BC}}{\mathrm{BQ}}$ ( AC =BC)
Thus, by SAS similarity, we get
ΔACP ~ ΔBQC
Hence Proved

Question 14 

In the given figure, find P.








Sol :
From the figure,
$\frac{A B}{R Q}=\frac{3.8}{7.6}=\frac{1}{2}$
$\frac{B C}{P Q}=\frac{6}{12}=\frac{1}{2}$
$\frac{A C}{P R}=\frac{3 \sqrt{3}}{6 \sqrt{3}}=\frac{1}{2}$

Hence, $\frac{A B}{R Q}=\frac{B C}{P Q}=\frac{A C}{P R}=\frac{1}{2}$

Now it can be seen that both the triangles are similar as the corresponding sides are propotional.
From the figure we can see that,
 P =  C
From ΔABC,
 A +  B +  C = 180°
60° + 80° +  C = 180°
 C = 180° – 140°
 C = 40°
Hence,  P = 40°

Question 15 

P and Q are points on the sides AB and AC respectively of a ΔABC. If AP = 2 cm, PB = 4 cm, AQ = 3 cm and QC = 6 cm, show that BC = 3 PQ.
Sol :








Here, $\frac{A P}{P B}=\frac{2}{4}=\frac{1}{2}$
and $\frac{A Q}{Q C}=\frac{3}{6}=\frac{1}{2}$
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}}$

∴ PQ || BC [by converse of basic proportionality theorem]
Now, take ΔAPQ and ΔABC
APQ = ABC (corresponding angles)
AQP = ACB (corresponding angles)

 ΔAPQ ~ ΔABC (by AA similarity criterion)

Since, triangles are similar, hence corresponding sides will be proportional
$\therefore \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{\mathrm{AQ}}{\mathrm{AC}}$
$\Rightarrow \frac{2}{6}=\frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{3}{9}$
$\Rightarrow \frac{2}{6}=\frac{\mathrm{PQ}}{\mathrm{BC}}$
⇒BC = 3PQ
Hence Proved

Question 16 

P and Q are respectively the points on the sides AB and AC of a ΔABC. If AP = 2 cm, PB = 6 cm, AQ = 3 cm and QC = 9, Prove that BC = 4PQ.
Sol :








Here, $\frac{A P}{P B}=\frac{2}{6}=\frac{1}{3}$
and $\frac{A Q}{Q C}=\frac{3}{9}=\frac{1}{3}$
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}}$

∴ PQ || BC [by the converse of basic proportionality theorem]
Now, take ΔAPQ and ΔABC
APQ = ABC (corresponding angles)
AQP = ACB (corresponding angles)
 ΔAPQ ~ ΔABC (by AA similarity criterion)

Since, triangles are similar, hence corresponding sides will be proportional
$\therefore \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{\mathrm{AQ}}{\mathrm{AC}}$
$\Rightarrow \frac{2}{8}=\frac{P Q}{B C}=\frac{3}{12}$
$\Rightarrow \frac{2}{8}=\frac{\mathrm{PQ}}{\mathrm{BC}}$
⇒BC = 4PQ
Hence Proved

Question 17 

In the given figure, $\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}}=\frac{1}{2}$ and AB = 5 cm. Find the value of DC.








Sol :
In ΔAOB and ΔCOD,
 AOB = COD (Vertically opposite angles)
 $\frac{A O}{O C}=\frac{B O}{O D}$(given)
Therefore according to SAS similarity criterion,
 ΔAOB ~ ΔCOD

Since, triangles are similar, hence corresponding sides will be proportional
$\therefore \frac{A O}{O C}=\frac{B O}{O D}=\frac{A B}{D C}$
$\Rightarrow \frac{1}{2}=\frac{1}{2}=\frac{5}{D C}$
$\Rightarrow \frac{1}{2}=\frac{5}{D C}$
 DC = 10cm

Question 18 

In the given figure, OA .OB = OC.OD, show that: A = C and B = D.








Sol :
Given: OA × OB = OC × OD
To Prove: ∠A = ∠C and ∠B = ∠D
Now, OA .OB = OC.OD
 $\Rightarrow \frac{O A}{O C}=\frac{O D}{O B}$…(i)

In AOD and COB
$\frac{O A}{O C}=\frac{O D}{O B}$ (from (i))
AOD = COB (vertically opposite angles)
 AOD ~ COB (by SAS similarity criterion)
We know that if two triangles are similar then their corresponding angles are equal.
 ∠A = ∠C and ∠B = ∠D
Hence Proved

Question 19 

In the given figure, CM and RN are respectively the medians of ΔABC and ΔPQR. If ΔABC ~ ΔPQR, prove that:
(i) ΔAMC ~ ΔPNR
(ii) $\frac{C M}{R N}=\frac{A B}{P Q}$
(iii) ΔCMB ~ ΔRNQ








Sol :
Given: CM is the median of ABC and RN is the median of PQR
Also, △ABC ~ △PQR
To Prove: (i) △AMC ~△PNR
CM is median of △ABC

So, $A M=M B=\frac{1}{2} A B$ …(1)

Similarly, RN is the median of △PQR
So, $\mathrm{PN}=\mathrm{QN}=\frac{1}{2} \mathrm{PQ}$ …(2)

Given △ABC ~△PQR
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}$
(corresponding sides of similar triangle are proportional)
$\frac{A B}{P Q}=\frac{C A}{R P}$
$\frac{2 \mathrm{AM}}{2 \mathrm{PN}}=\frac{\mathrm{CA}}{\mathrm{RP}}$ (from (1) and (2))

$\Rightarrow \frac{A M}{P N}=\frac{C A}{R P}$ …(3)

Also, since △ABC ~△PQR
A = P …(4)
(corresponding angles of similar triangles are equal)

In △AMC and △PNR
A = P (from (4))
$\frac{A M}{P N}=\frac{C A}{R P}$ (from (3))
 △AMC ~△PNR (by SAS similarity)
Hence Proved

(ii)To Prove:$\frac{\mathrm{CM}}{\mathrm{RN}}=\frac{\mathrm{AB}}{\mathrm{PQ}}$
In part (i), we proved that △AMC ~△PNR
So, $\frac{C M}{R N}=\frac{A C}{P R}=\frac{A M}{P N}$
(corresponding sides of a similar triangle are proportional)
Therefore, $\frac{C M}{R N}=\frac{A M}{P N}$
$\frac{C M}{R N}=\frac{2 A M}{2 P N}$
$\frac{C M}{R N}=\frac{A B}{P Q}$
Hence Proved

(iii) △CMB ~△RNQ
Given △ABC ~△PQR
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}$
(corresponding sides of similar triangle are proportional)
$\frac{A B}{P Q}=\frac{B C}{Q R}$
$\frac{2 \mathrm{BM}}{2 \mathrm{QN}}=\frac{\mathrm{BC}}{\mathrm{QR}}$ (from (1) and (2))
$\Rightarrow \frac{2 \mathrm{M}}{\mathrm{QN}}=\frac{\mathrm{BC}}{\mathrm{QR}}$ …(5)
Also, since △ABC ~△PQR
B = Q …(6)
(corresponding angles of similar triangles are equal)
In △CMB and △RNQ
B = Q (from (6))
$\frac{B M}{Q N}=\frac{B C}{Q R}$ (from (5))
 △CMB ~△RNQ (by SAS similarity)
Hence Proved

Question 20 

In the adjoining figure, the diagonal BD of a parallelogram ABCD intersects the segment AE at the point F, where E is any point on the side BC. Show that DF x FE = BF x FA.







Sol :
Given: ABCD is a parallelogram
To Prove: DF x FE = BF x FA
In △AFD and △BFE
1 = 2 (alternate angles)
3 = 4 (vertically opposite angles)
 △AFD ~△BFE (by AA similarity criterion)
So, $\frac{\mathrm{FB}}{\mathrm{FD}}=\frac{\mathrm{FE}}{\mathrm{FA}}$
(corresponding sides of similar triangle are proportional)
$\Rightarrow \frac{\mathrm{BF}}{\mathrm{DF}}=\frac{\mathrm{FE}}{\mathrm{FA}}$
 DF x FE = BF x FA
Hence Proved

Question 21 

In the given figure, DEFG is a square and BAC is a right angle. Show that DE2= BD x EC.








Sol :
Given: DEFG is a square and BAC = 90°
To Prove: DE2 = BD × EC.
In △AGF and △DBG
GAF = BDG [each 90°]
AGF = DBG
[corresponding angles because GF|| BC and AB is the transversal]
△AFG ~ △DBG [by AA Similarity Criterion] …(1)
In △AGF and △EFC
GAF = CEF [each 90°]
AFG = ECF
[corresponding angles because GF|| BC and AC is the transversal]
△AGF ~△EFC [by AA Similarity Criterion] …(2)
From equation (1) and (2), we have
△DBG ~ △EFC
Since, the triangle is similar. Hence corresponding sides are proportional
$\Rightarrow \frac{\mathrm{BD}}{\mathrm{EF}}=\frac{\mathrm{DG}}{\mathrm{EC}}$
$\Rightarrow \frac{\mathrm{BD}}{\mathrm{DE}}=\frac{\mathrm{DE}}{\mathrm{EC}}$ [DEFG is a square]
DE2 = BD × EC
Hence Proved

Question 22 

In the given figure, ABD is a right angled triangle being right angled at A and AD  BC. Show that:

(i) AB2= BC.BD
(ii) AC2 = BC. DC
(iii) AB. AC. = BC. AD
Sol :
(i) In ΔDAB and ΔACB
ADB = CAB [each 90°]
DAB = CAB [common angle]
 △DAB ~△ACB [by AA similarity]

Since the triangles are similar, hence corresponding sides are in proportional.
$\Rightarrow \frac{A B}{D B}=\frac{B C}{A B}$
 AB2= BC×BD

(ii) In △ACB and △DAC
CAB = ADC [each 90°]
CAB = CAD [common angle]
 △ACB ~△DAC [by AA similarity]
Since the triangles are similar, hence corresponding sides are in proportional.
$\Rightarrow \frac{\mathrm{DC}}{\mathrm{AC}}=\frac{\mathrm{AC}}{\mathrm{BC}}$
 AC2 = BC. DC

(iii) In part (i) we proved that △DAB ~△ACB
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{BC}}{\mathrm{AC}}$
 AB × AC = BC × AD
Hence Proved

Question 23 

In the given figure, ABC = 90° and BD  AC. If AB = 5.7 cm, BD = 3.8 cm and CD = 5.4 cm, find BC.









Sol :
Given: ∠ABC = 90° and BD丄 AC
and AB = 5.7 cm, BD = 3.8 cm and CD = 5.4 cm
To find: BC
Firstly, we have to show that △ABC ~△BDC
Let △ABC and △BDC
ABC = BDC [each 90°]
ACB = BCD [common angle]
 △ABC ~△BDC [by AA similarity criterion]
Since, triangles are similar, hence corresponding sides are proportional.
$\Rightarrow \frac{A B}{B C}=\frac{B D}{D C}$
$\Rightarrow \frac{5.7}{\mathrm{BC}}=\frac{3.8}{5.4}$
$\Rightarrow \mathrm{BC}=\frac{5.7 \times 5.4}{3.8}$
 BC = 8.1cm

Question 24 

In the given figure, CAB =90° and AD  BC. Show that ΔBDA ~ ΔBAC. If AC = 75 cm, AB = 1 cm and BC = 1.25 cm, find AD.











Sol :
Given: ∠CAB =90° and AD丄 BC
and AC = 75 cm, AB = 1 cm and BC = 1.25 cm
Now, In △ADB and △CAB
ADB = CAB [each 90°]
ABD = CBA [common angle]
 △ADB ~△CAB [by AA similarity]
Since the triangles are similar, hence corresponding sides are in proportional.
$\Rightarrow \frac{A C}{B C}=\frac{A D}{A B}$
$\Rightarrow \frac{75}{1.25}=\frac{A D}{1}$
 AD = 60cm


S.noChaptersLinks
1Real numbersExercise 1.1
Exercise 1.2
Exercise 1.3
Exercise 1.4
2PolynomialsExercise 2.1
Exercise 2.2
Exercise 2.3
3Pairs of Linear Equations in Two VariablesExercise 3.1
Exercise 3.2
Exercise 3.3
Exercise 3.4
Exercise 3.5
4Trigonometric Ratios and IdentitiesExercise 4.1
Exercise 4.2
Exercise 4.3
Exercise 4.4
5TrianglesExercise 5.1
Exercise 5.2
Exercise 5.3
Exercise 5.4
Exercise 5.5
6StatisticsExercise 6.1
Exercise 6.2
Exercise 6.3
Exercise 6.4
7Quadratic EquationsExercise 7.1
Exercise 7.2
Exercise 7.3
Exercise 7.4
Exercise 7.5
8Arithmetic Progressions (AP)Exercise 8.1
Exercise 8.2
Exercise 8.3
Exercise 8.4
9Some Applications of Trigonometry: Height and DistancesExercise 9.1
10Coordinates GeometryExercise 10.1
Exercise 10.2
Exercise 10.3
Exercise 10.4
11CirclesExercise 11.1
Exercise 11.2
12ConstructionsExercise 12.1
13Area related to CirclesExercise 13.1
14Surface Area and VolumesExercise 14.1
Exercise 14.2
Exercise 14.3
Exercise 14.4
15ProbabilityExercise 15.1

No comments:

Post a Comment

Contact Form

Name

Email *

Message *