KC Sinha Mathematics Solution Class 10 Chapter 4 Trigonometric Ratios and Identities Exercise 4.1


Exercise 4.1
Exercise 4.2
Exercise 4.3
Exercise 4.4

Exercise 4.1


Question 1

From the given figure, find the value of the following:








(i) sin C
(ii) sin A
(iii) cos C
(iv) cos A
(v) tan C
(vi) tan A
Sol :
(i) Sin C
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
So, here θ = C
Side opposite to C = AB = 3
Hypotenuse = AC = 5
So, $\sin C=\frac{A B}{A C}=\frac{3}{5}$

(ii) Sin A
So, here θ = A
The side opposite to A = BC = 4
Hypotenuse = AC = 5
So, $\sin A=\frac{B C}{A C}=\frac{4}{5}$

(iii) Cos C
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
So, here θ = C
Side adjacent to C = BC = 4
Hypotenuse = AC = 5
So, $\cos C=\frac{B C}{A C}=\frac{4}{5}$

(iv) Cos A
Here, θ = A
Side adjacent to A = AB = 3
Hypotenuse = AC = 5
So, $\cos A=\frac{A B}{A C}=\frac{3}{5}$

(v) tan C
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
So, here θ = C
Side opposite to C = AB = 3
Side adjacent to C = BC = 4
So, $\tan C=\frac{A B}{B C}=\frac{3}{4}$

(vi) tan A
here θ = A
Side opposite to A = BC = 4
Side adjacent to A = AB = 3
So, $\tan A=\frac{A B}{B C}=\frac{4}{3}$

Question 2 

From the given figure, find the value of :
(i) tan θ
(ii) cos θ








Sol :
(i) tan θ
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Side opposite to θ = AB = 4
Side adjacent to θ = BC = 3
So, $\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{4}{3}$

(ii) cos θ
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to θ = BC = 3
Hypotenuse = AC = 5
So, $\cos \theta=\frac{B C}{A C}=\frac{3}{5}$

Question 3 

From the given figure, find the value of
(i) sin θ
(ii) tan θ
(iii) tan A – cot C



 





Sol :
(i) sin θ
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to θ = BC = ?
Hypotenuse = AC = 13
Firstly we have to find the value of BC.
So, we can find the value of BC with the help of Pythagoras theorem.
According to Pythagoras theorem,
(Hypotenuse)2 = (Base)2 + (Perpendicular)2
 (AB)2 + (BC)2 = (AC)2
 (12)2 + (BC)2 = (13)2
 144 + (BC)2 = 169
 (BC)2 = 169–144
 (BC)2 = 25
 BC =25
 BC =±5
But side BC can’t be negative. So, BC = 5
Now, BC = 5 and AC = 13
So, $\sin \theta=\frac{B C}{A C}=\frac{5}{13}$

(ii) tan θ
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Side opposite to θ = BC = 5
Side adjacent to θ = AB = 12
So, $\tan \theta=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{5}{12}$

(iii) tan A – cot C
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
and
$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$
tan A
Here, θ = A
Side opposite to A = BC = 5
Side adjacent to A = AB = 12
So, $\tan \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{5}{12}$
Cot C
Here, θ = C
Side adjacent to C = BC = 5
Side opposite to C = AB = 12
So, $\cot C=\frac{B C}{A B}=\frac{5}{12}$
So, $\tan A-\cot C=\frac{5}{12}-\frac{5}{12}=0$

Question 4 A 

In ∆ABC, right angled at B, AB = 24 cm, BC = 7 cm. Determine
a. sin A, cos A
b. sin C, cos C
Sol :









(i)
(a) sin A
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
So, here θ = A
Side opposite to A = BC = 7
Hypotenuse = AC = ?
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem.

According to Pythagoras theorem,
(Hypotenuse)2 = (Base)2 + (Perpendicular)2
 (AB)2 + (BC)2 = (AC)2
 (24)2 + (7)2 = (AC)2
 576 + 49 = (AC)2
 (AC)2 = 625
 AC =625
 AC =±25
But side AC can’t be negative. So, AC = 25cm
Now, BC = 7 and AC = 25
So, $\sin A=\frac{B C}{A C}=\frac{7}{25}$
Cos A
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
So, here θ = A
Side adjacent to A = AB = 24
Hypotenuse = AC = 25
So,$\cos A=\frac{A B}{A C}=\frac{24}{25}$
(b) sin C

We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
So, here θ = C
The side opposite to C = AB = 24
Hypotenuse = AC = 25
So, $\sin C=\frac{A B}{A C}=\frac{24}{25}$
Cos C
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
So, here θ = C
Side adjacent to C = BC = 7
Hypotenuse = AC = 25
So, $\cos C=\frac{B C}{A C}=\frac{7}{25}$

Question 4 B 

Consider ∆ACB, right angled at C, in which AB = 29 units, BC = 21 units and ABC=θ. Determine the values of
a. cos2 θ+ sin2 θ
b. cos2 θ – sin2 θ
Sol :








(a) Cos2θ +sin2 θ
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem.
According to Pythagoras theorem,
(Hypotenuse)2 = (Base)2 + (Perpendicular)2
 (AC)2 + (BC)2 = (AB)2
 (AC)2 + (21)2 = (29)2
 (AC)2 = (29)2 – (21)2
Using the identity a2 –b2 = (a+b) (a – b)
 (AC)2 = (29–21)(29+21)
 (AC)2 = (8)(50)
 (AC)2 = 400
 AC =400
 AC =±20
But side AC can’t be negative. So, AC = 20units
Now, we will find the sin θ and cos θ
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
In ∆ACB, Side opposite to angle θ = AC = 20
and Hypotenuse = AB = 29
So, $\sin \theta=\frac{A C}{A B}=\frac{20}{29}$
Now, We know that
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$

In ∆ACB, Side adjacent to angle θ = BC = 21
and Hypotenuse = AB = 29
So, $\cos \theta=\frac{B C}{A B}=\frac{21}{29}$
So$\cos ^{2} \theta+\sin ^{2} \theta=\left(\frac{21}{29}\right)^{2}+\left(\frac{20}{29}\right)^{2}$
$=\frac{441+400}{29 \times 29}$
$=\frac{841}{841}$
=1
Cos2θ +sin2 θ = 1
(b) Cos2θ – sin2 θ
Putting values, we get
$\cos ^{2} \theta-\sin ^{2} \theta=\left(\frac{21}{29}\right)^{2}-\left(\frac{20}{29}\right)^{2}$
$=\frac{441-400}{29 \times 29}$
$=\frac{41}{841}$

Question 4 C 

In ∆ABC, A is a right angle, then find the values of sin B, cos C and tan B in each of the following :
a. AB = 12, AC = 5, BC = 13
b. AB = 20, AC = 21, BC = 29
c. BC = √2, AB = AC = 1
Sol :
Given that A is a right angle.








(a) AB = 12, AC = 5, BC = 13
To Find : sin B, cos C and tan B
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Here, θ = B
Side opposite to angle B = AC = 5
Hypotenuse = BC =13
So, $\sin \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{5}{13}$
Now, Cos C
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Here, θ = C
Side adjacent to angle C = AC = 5
Hypotenuse = BC =13
So, $\cos C=\frac{A C}{B C}=\frac{5}{13}$
Now, tan B
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Here, θ = B
The side opposite to angle B = AC = 5
The side adjacent to angle B = AB = 12
So, $\tan \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{5}{12}$
(b) AB = 20, AC = 21, BC = 29
To Find: sin B, cos C and tan B
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Here, θ = B
The side opposite to angle B = AC =21
Hypotenuse = BC =29
So, $\sin B=\frac{A C}{B C}=\frac{21}{29}$
Now, Cos C
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Here, θ = C
Side adjacent to angle C = AC = 21
Hypotenuse = BC = 29
So,$\cos C=\frac{A C}{B C}=\frac{21}{29}$

Now, tan B
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Here, θ = B
The side opposite to angle B = AC = 21
The side adjacent to angle B = AB = 20
So, $\tan \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{21}{20}$

(c) BC =√2, AB = AC = 1
To Find: sin B, cos C and tan B
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Here, θ = B
The side opposite to angle B = AC =1
Hypotenuse = BC =√2
So$\sin \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{1}{\sqrt{2}}$
Now, Cos C
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Here, θ = C
Side adjacent to angle C = AC = 1
Hypotenuse = BC = √2
So, $\cos C=\frac{A C}{B C}=\frac{1}{\sqrt{2}}$
Now, tan B
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Here, θ = B
The side opposite to angle B = AC = 1
The side adjacent to angle B = AB = 1
So,$\tan B=\frac{A C}{A B}=\frac{1}{1}=1$

Question 5 A 

Find the value of the following : (a) sin θ (b) cos θ (c) tan θ from the figures given below :








Sol :
Firstly, we give the name to the midpoint of BC i.e. M
BC = BM + MC = 2BM or 2MC
 BM = 5 and MC = 5
Now, we have to find the value of AM, and we can find out with the help of Pythagoras theorem.
So, In ∆AMB
 (AM)2 + (BM)2 = (AB)2
 (AM)2 + (5)2 = (13)2
 (AM)2 = (13)2 – (5)2
Using the identity a2 –b2 = (a+b) (a – b)
 (AM)2 = (13–5)(13+5)
 (AM)2 = (8)(18)
 (AM)2 = 144
 AM =144
 AM =±12
But side AM can’t be negative. So, AM = 12
a. sin θ










We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
In ∆AMB
Side opposite to θ = AM = 12
Hypotenuse = AB=13
So, $\sin \theta=\frac{A M}{A B}=\frac{12}{13}$
So, $\sin \theta=\frac{12}{13}$
b. cos θ
We know that, $\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
In ∆AMB
The side adjacent to θ = BM = 5
Hypotenuse = AB = 13
So, $\cos \theta=\frac{B M}{A B}=\frac{5}{13}$
So, $\cos \theta=\frac{5}{13}$
c. tan θ








We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
In ∆AMB
Side opposite to θ = AM = 12
The side adjacent to θ = BM = 5
So, $\tan \theta=\frac{\mathrm{AM}}{\mathrm{BM}}=\frac{12}{5}$
So, $\tan \theta=\frac{12}{5}$

Question 5 B 

Find the value of the following : (a) sin θ (b) cos θ (c) tan θ from the figures given below :








Sol :
Firstly, we have to find the value of XM and we can find out with the help of Pythagoras theorem
So, In ∆XMZ
 (XM)2 + (MZ)2 = (XZ)2
 (XM)2 + (16)2 = (20)2
 (XM)2 = (20)2 – (16)2
Using the identity a2 –b2 = (a+b) (a – b)
 (XM)2 = (20–16)(20+16)
 (XM)2 = (4)(36)
 (XM)2 = 144
 XM =144
 XM =±12
But side XM can’t be negative. So, XM = 12
Now, In ∆XMY we have the value of XM and MY but we don’t have the value of XY.
So, again we apply the Pythagoras theorem in ∆XMY
 (XM)2 + (MY)2 = (XY)2
 (12)2 + (5)2 = (XY)2
 144 + 25 = (XY)2
 (XY)2 = 169
 XY =169
 XY =±13
But side XY can’t be negative. So, XY = 13
a. sin θ
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
In ∆XMY
Side opposite to θ = MY = 5
Hypotenuse = XY = 13
So, $\sin \theta=\frac{\mathrm{MY}}{\mathrm{XY}}=\frac{5}{13}$
b. cos θ
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
In ∆XMY
Side adjacent to θ = XM = 12
Hypotenuse = XY = 13
So,$\cos \theta=\frac{\mathrm{XM}}{\mathrm{XY}}=\frac{12}{13}$
c. tan θ
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
In ∆XMY
The side opposite to θ = MY = 5
Side adjacent to θ = XM = 12
So, $\tan \theta=\frac{\mathrm{MY}}{\mathrm{XM}}=\frac{5}{12}$

Question 6 

In ∆PQR, Q is a right angle PQ = 3, QR = 4. If P=α and R=β, then find the values of
(i) sin α (ii) cos α
(iii) tan α (iv) sin β
(v) cos β (vi) tan β
Sol :








Given : PQ = 3, QR = 4
 (PQ)2 + (QR)2 = (PR)2
 (3)2 + (4)2 = (PR)2
 9 + 16 = (PR)2
 (PR)2 = 25
 PR =25
 PR =±5
But side PR can’t be negative. So, PR = 5
(i) sin α
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Here, θ = α
The side opposite to angle α = QR =4
Hypotenuse = PR =5
So, $\sin \alpha=\frac{4}{5}$
(ii) cos α
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Here, θ = α
The side adjacent to angle α = PQ =3
Hypotenuse = PR =5
So, $\cos \alpha=\frac{3}{5}$
(iii) tan α
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Here, θ = α
Side opposite to angle α = QR =4
Side adjacent to angle α = PQ =3
So,$\tan \alpha=\frac{4}{3}$
(iv) sin β
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Here, θ = β
The side opposite to angle β = PQ =3
Hypotenuse = PR =5
So, $\sin \beta=\frac{3}{5}$
(v) cos β
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Here, θ = β
Side adjacent to angle β = QR =4
Hypotenuse = PR =5
So, $\cos \beta=\frac{4}{5}$
(vi) tan β
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Here, θ = β
Side opposite to angle β = PQ =3
Side adjacent to angle β = QR =4
So, $\tan \beta=\frac{3}{4}$

Question 7 A 

If $\sin \theta=\frac{4}{5}$ ,then find the values of cos θ and tan θ.
Sol :
Given: $\sin \theta=\frac{4}{5}$







We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$\sin \theta=\frac{4}{5} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{4}{5} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{4}{5}$
Let,
Perpendicular =AB =4k
and Hypotenuse =AC =5k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
In right angled  ABC, we have
 (AB)2 + (BC)2 = (AC)2
 (4k)2 + (BC)2 = (5k)2
 16k2 + (BC)2 = 25k2
 (BC)2 = 25 k2 –16 k2
 (BC)2 = 9 k2
 BC =9 k2
 BC =±3k
But side BC can’t be negative. So, BC = 3k
Now, we have to find the value of cos θ and tan θ
We know that,
$\cos \theta=\frac{\text { base }}{\text { hypotenuse }}$
The side adjacent to angle θ or base = BC =3k
Hypotenuse = AC =5k
So, $\cos \theta=\frac{3 \mathrm{k}}{5 \mathrm{k}}=\frac{3}{5}$
Now,
We know that,$\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
Perpendicular = AB =4k
Base = BC =3k
So, $\tan \theta=\frac{4 k}{3 k}=\frac{4}{3}$

Question 7 B 

If $\sin \mathrm{A}=\frac{3}{4}$ ,calculate cos A and tan A.
Sol :
Given: Sin A $=\frac{3}{4}$








We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$\sin \theta=\frac{3}{4} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{3}{4} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{3}{4}$
Let,
Side opposite to angle θ = BC =3k
and Hypotenuse = AC =4k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
 (AB)2 + (BC)2 = (AC)2
 (AB)2 + (3k)2 = (4k)2
 (AB)2 + 9k2 = 16k2
 (AB)2 = 16 k2 – 9 k2
 (AB)2 = 7 k2
 AB =k7
So, AB = k√7
Now, we have to find the value of cos A and tan A
We know that,
$\cos \theta=\frac{\text { Side adjacent to angle } \theta}{\text { hypotenuse }}$
Here, θ = A
The side adjacent to angle A = AB =k√7
Hypotenuse = AC =4k
So,$\cos A=\frac{k \sqrt{7}}{4 k}=\frac{\sqrt{7}}{4}$
Now,
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
The side opposite to angle A = BC =3k
The side adjacent to angle A = AB =k√7
So,$\tan \mathrm{A}=\frac{3 \mathrm{k}}{\mathrm{k} \sqrt{7}}=\frac{3}{\sqrt{7}}$

Question 8 

If $\sin \theta=\frac{3}{5}$ , then find the values cos θ and tan θ.
 
Sol :
Given:$\sin \theta=\frac{3}{5}$








We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$\sin \theta=\frac{3}{5} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{3}{5} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{3}{5}$
Let,
Perpendicular =AB =3k
and Hypotenuse =AC =5k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
 (AB)2 + (BC)2 = (AC)2
 (3k)2 + (BC)2 = (5k)2
 9k2 + (BC)2 = 25k2
 (BC)2 = 25 k2 – 9 k2
 (BC)2 = 16 k2
 BC =16 k2
 BC =±4k
But side BC can’t be negative. So, BC = 4k
Now, we have to find the value of cos θ and tan θ
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
The side adjacent to angle θ = BC =4k
Hypotenuse = AC =5k
So, $\cos \theta=\frac{4 \mathrm{k}}{5 \mathrm{k}}=\frac{4}{5}$
Now, tan θ
We know that,
$\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
Perpendicular = AB =3k
Base = BC =4k
So, $\tan \theta=\frac{3 \mathrm{k}}{4 \mathrm{k}}=\frac{3}{4}$

Question 9 

If $\cos \theta=\frac{4}{5}$ , then find the value of tan θ.
Sol :








We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Or $\cos \theta=\frac{\text { base }}{\text { Hypotenuse }}$
$\cos \theta=\frac{4}{5} \Rightarrow \frac{B}{H}=\frac{4}{5} \Rightarrow \frac{B C}{A C}=\frac{4}{5}$
Let,
Base =BC = 4k
Hypotenuse =AC = 5k
Where, k ia any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
 (AB)2 + (BC)2 = (AC)2
 (AB)2 + (4k)2 = (5k)2
 (AB)2 + 16k2 = 25k2
 (AB)2 = 25 k2 –16 k2
 (AB)2 = 9 k2
 AB =9 k2
 AB =±3k
But side AB can’t be negative. So, AB = 3k
Now, we have to find tan θ
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Side opposite to angle θ = BC =4k
Side adjacent to angle θ = AB =3k
So,$\tan \theta=\frac{4 k}{3 k}=\frac{4}{3}$

Question 10 A 

If $\tan \theta=\frac{3}{4}$ then find the values of cos θ and sin θ.
 
Sol :








We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
$\tan \theta=\frac{3}{4}$
$\Rightarrow \frac{P}{B}=\frac{3}{4}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{3}{4}$
Let,
The side opposite to angle θ =AB = 3k
The side adjacent to angle θ =BC = 4k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (3k)2 + (4k)2 = (AC)2
 (AC)2 = 9 k2+16 k2
 (AC)2 = 25 k2
 AC =25 k2
 AC =±5k
But side AC can’t be negative. So, AC = 5k
Now, we will find the sin θ and cos θ
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle θ = AB = 3k
and Hypotenuse = AC = 5k
So, $\sin \theta=\frac{A B}{A C}=\frac{3 k}{5 k}=\frac{3}{5}$
Now, We know that
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle θ = BC = 4k
and Hypotenuse = AC = 5k
So,$\cos \theta=\frac{B C}{A C}=\frac{4 k}{5 k}=\frac{4}{5}$


 Question 10 B 

If tan A= 4/3. Find the other trigonometric ratios of the angle A.
Sol :





We know that,

$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
Here, θ = A
$\tan \mathrm{A}=\frac{4}{3}$
$\Rightarrow \frac{P}{B}=\frac{4}{3}$
$\Rightarrow \frac{\mathrm{BC}}{\mathrm{AB}}=\frac{4}{3}$

Let,
The side opposite to angle A =BC = 4k
The side adjacent to angle A =AB = 3k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (3k)2 + (4k)2 = (AC)2
 (AC)2 = 9 k2 +16 k2
 (AC)2 = 25 k2
 AC =25 k2
 AC =±5k
But side AC can’t be negative. So, AC = 5k
Now, we will find the sin A and cos A
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle A = BC = 4k
and Hypotenuse = AC = 5k
So, $\sin A=\frac{B C}{A C}=\frac{4 k}{5 k}=\frac{4}{5}$

Now, We know that
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle A = AB = 3k
and Hypotenuse = AC = 5k

So, $\cos A=\frac{A B}{A C}=\frac{3 k}{5 k}=\frac{3}{5}$
Now, we find other trigonometric ratios
$\operatorname{cosec} \mathrm{A}=\frac{1}{\sin \mathrm{A}}$
$=\frac{1}{\frac{4}{5}}$
$=\frac{5}{4}$

$\sec \mathrm{A}=\frac{1}{\cos \mathrm{A}}$
$=\frac{1}{\frac{3}{5}}$
$=\frac{5}{3}$

$\cot A=\frac{1}{\tan A}$
$=\frac{1}{\frac{4}{3}}$
$=\frac{3}{4}$

Question 11 

If cot $\theta=\frac{12}{5}$, then find the value of sin θ.
Sol :









We know that,
$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$
Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$
$\cot \theta=\frac{12}{5} \Rightarrow \frac{\mathrm{B}}{\mathrm{P}}=\frac{12}{5} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{12}{5}$
Let,
Side adjacent to angle θ =AB = 12k
The side opposite to angle θ =BC = 5k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (12k)2 + (5k)2 = (AC)2
 (AC)2 = 144 k2 +25 k2
 (AC)2 = 169 k2
 AC =169 k2
 AC =±13k
But side AC can’t be negative. So, AC = 13k
Now, we will find the sin θ
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle θ = BC = 5k
and Hypotenuse = AC = 13k
So, $\sin \theta=\frac{B C}{A C}=\frac{5 k}{13 k}=\frac{5}{13}$

Question 12 

If tan $\theta=\frac{5}{12}$, then find the value of cos θ.
Sol :









We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
$\tan \theta=\frac{5}{12} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{5}{12} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AB}}=\frac{5}{12}$
Let,
The side opposite to angle θ =BC = 5k
The side adjacent to angle θ =AB = 12k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (12k)2 + (5k)2 = (AC)2
 (AC)2 = 144 k2 +25 k2
 (AC)2 = 169 k2
 AC =169 k2
 AC =±13k
But side AC can’t be negative. So, AC = 13k
Now, We know that
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle θ = AB = 12k
and Hypotenuse = AC = 13k
So, $\cos \theta=\frac{A B}{A C}=\frac{12 k}{13 k}=\frac{12}{13}$

Question 13 

If sin $\theta=\frac{12}{13}$, then find the value of cos θ and tan θ.
 
Sol :
Given: $\sin \theta=\frac{12}{13}$








We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$\sin \theta=\frac{12}{13} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{12}{13} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{12}{13}$
Let,
Side opposite to angle θ = 12k
and Hypotenuse = 13k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
 (AB)2 + (BC)2 = (AC)2
 (12k)2 + (BCk)2 = (13)2
 144 k2 + (BC)2 = 169 k2
 (BC)2 = 169 k2 –144 k2
 (BC)2 = 25 k2
 BC =25 k2
 BC =±5k
But side BC can’t be negative. So, BC = 5k
Now, we have to find the value of cos θ and tan θ
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle θ = BC =5k
Hypotenuse = AC =13k
So, $\cos \theta=\frac{5 \mathrm{k}}{13 \mathrm{k}}=\frac{5}{13}$
Now, tan θ
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
side opposite to angle θ = AB =12k
Side adjacent to angle θ = BC =5k
So, $\tan \theta=\frac{12 \mathrm{k}}{5 \mathrm{k}}=\frac{12}{5}$

Question 14 

If tan θ =0.75, then find the value of sin θ.
 
Sol :








We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$

Given: tan θ =0.75
$\Rightarrow \tan \theta=\frac{75}{100}=\frac{3}{4}$
$\tan \theta=\frac{3}{4} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{3}{4} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AB}}=\frac{3}{4}$
Let,
The side opposite to angle θ =BC = 3k
The side adjacent to angle θ =AB = 4k
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (4k)2 + (3k)2 = (AC)2
 (AC)2 = 16 k2 +9 k2
 (AC)2 = 25 k2
 AC =√25 k2
 AC =±5k
But side AC can’t be negative. So, AC = 5k
Now, we will find the sin θ
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle θ = BC = 3k
and Hypotenuse = AC = 5k
So, $\sin \theta=\frac{B C}{A C}=\frac{3 k}{5 k}=\frac{3}{5}$

Question 15 

If tan B= √3, then find the values of sin B and cos B.
 
Sol :









We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
Given: tan B = √3
$\Rightarrow \tan \mathrm{B}=\frac{\sqrt{3}}{1}$
$\tan \mathrm{B}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\sqrt{3}}{1}$
Let,
Side opposite to angle B =AC = √3k
The side adjacent to angle B =AB = 1k
where k is any positive integer
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (AC)2 = (BC)2
 (1k)2 + (√3k)2 = (BC)2
 (BC)2 = 1 k2 +3 k2
 (BC)2 = 4 k2
 BC =2 k2
 BC =±2k
But side BC can’t be negative. So, BC = 2k
Now, we will find the sin B and cos B
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle B = AC = k√3
and Hypotenuse = BC = 2k
So, $\sin \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{k} \sqrt{3}}{2 \mathrm{k}}=\frac{\sqrt{3}}{2}$
Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
The side adjacent to angle B = AB =1k
Hypotenuse = BC =2k
So, $\cos \mathrm{B}=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{1 \mathrm{k}}{2 \mathrm{k}}=\frac{1}{2}$

Question 16 

If $\tan \theta=\frac{\mathrm{m}}{\mathrm{n}}$, then find the values of cos θ and sin θ.
 
Sol :








We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
Here, $\tan \theta=\frac{\mathrm{m}}{\mathrm{n}}$
So, Side opposite to angle θ =AC = m
The side adjacent to angle θ =AB = n
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (AC)2 = (BC)2
 (n)2 + (m)2 = (BC)2
 (BC)2 = m2 + n2
 BC = m2 + n2
So, BC =√(m2 + n2)
Now, we will find the sin B and cos B
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle θ = AC = m
and Hypotenuse = BC =√(m2 + n2)
So, $\sin \theta=\frac{A C}{B C}=\frac{m}{\sqrt{m^{2}+n^{2}}}$

Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle θ = AB =n
Hypotenuse = BC =√(m2 + n2)
So, $\cos \theta=\frac{A B}{B C}=\frac{n}{\sqrt{m^{2}+n^{2}}}$


Question 17 

If sin θ = √3 cos θ, then find the values of cos θ and sin θ.
 
Sol :
Given : sin θ =√3cos θ
$\Rightarrow \frac{\sin \theta}{\cos \theta}=\sqrt{3}$
 tan θ =√3









We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
and tan θ = √3
$\Rightarrow \tan \theta=\frac{\sqrt{3}}{1}$
$\tan \theta=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\sqrt{3}}{1}$
Let,
The side opposite to angle θ =AC = k√3
The side adjacent to angle θ =AB = 1k
where k is any positive integer
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (AC)2 = (BC)2
 (1k)2 + (k√3)2 = (BC)2
 (BC)2 = 1 k2 +3 k2
 (BC)2 = 4 k2
 BC =2 k2
 BC =±2k
But side BC can’t be negative. So, BC = 2k
Now, we will find the sin θ and cos θ
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle θ = AC = k√3
and Hypotenuse = BC = 2k
So,$\sin \theta=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{k} \sqrt{3}}{2 \mathrm{k}}=\frac{\sqrt{3}}{2}$
Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
The side adjacent to angle θ = AB =1k
Hypotenuse = BC =2k
So, $\cos \theta=\frac{A B}{B C}=\frac{1 k}{2 k}=\frac{1}{2}$

Question 18 A 

If $\cot \theta=\frac{21}{20}$, then find the values of cos θ and sin θ.
 
Sol :








We know that,
$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$
Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$
$\cot \theta=\frac{21}{20} \Rightarrow \frac{\mathrm{B}}{\mathrm{P}}=\frac{21}{20} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{21}{20}$
Let,
Side adjacent to angle θ =AB = 21k
The side opposite to angle θ =BC = 20k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (21k)2 + (20k)2 = (AC)2
 (AC)2 = 441 k2 +400 k2
 (AC)2 = 841 k2
 AC =√841 k2
 AC =±29k
But side AC can’t be negative. So, AC = 29k
Now, we will find the sin θ
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle θ = BC = 20k
and Hypotenuse = AC = 29k
So, $\sin \theta=\frac{B C}{A C}=\frac{20 k}{29 k}=\frac{20}{29}$
Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle θ = AB =21k
Hypotenuse = AC =29k
So, $\cos \theta=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{21 \mathrm{k}}{29 \mathrm{k}}=\frac{21}{29}$

Question 18 B 

If 15 cot A=18, find sin A and sec A.
Sol :
Given: 15 cot A = 8
$\Rightarrow \cot A=\frac{8}{15}$








And we know that,
$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$
Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$
$\cot \mathrm{A}=\frac{8}{15} \Rightarrow \frac{\mathrm{B}}{\mathrm{P}}=\frac{8}{15} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{8}{15}$
Let,
Side adjacent to angle A =AB = 8k
The side opposite to angle A =BC = 15k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (8k)2 + (15k)2 = (AC)2
 (AC)2 = 64 k2 +225 k2
 (AC)2 = 289 k2
 AC =289 k2
 AC =±17k
But side AC can’t be negative. So, AC = 17k
Now, we will find the sin θ
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle θ = BC = 15k
and Hypotenuse = AC = 17k
So, $\sin \theta=\frac{B C}{A C}=\frac{15 k}{17 k}=\frac{15}{17}$
Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
The side adjacent to angle θ = AB =8
Hypotenuse = AC =17
So, $\cos \theta=\frac{A B}{A C}=\frac{8 k}{17 k}=\frac{8}{17}$
$\therefore \sec \theta=\frac{1}{\cos \theta}$
$=\frac{1}{\frac{8}{17}}$
$=\frac{17}{8}$

Question 19 

If sin θ = cos θ and 0° < θ <90°, then find the values of sin θ and cos θ.
Sol :
Given: sinθ = cosθ
$\Rightarrow \frac{\sin \theta}{\cos \theta}=1$
 tan θ = 1








$\tan \theta=\frac{1}{1} \Rightarrow \frac{P}{B}=\frac{1}{1} \Rightarrow \frac{A B}{B C}=\frac{1}{1}$
Let,
Side opposite to angle θ = AB =1k
The side adjacent to angle θ = BC =1k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (1k)2 + (1k)2 = (AC)2
 (AC)2 = 1k2 +1k2
 (AC)2 = 2k2
 AC =2k2
 AC =k2
So, AC = k√2
Now, we will find the sin θ
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle θ = AB= 1k
and Hypotenuse = AC = k√2
So, $\sin \theta=\frac{A B}{A C}=\frac{1 k}{k \sqrt{2}}=\frac{1}{\sqrt{2}}$

Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
The side adjacent to angle θ = BC =1k
Hypotenuse = AC =k√2
So, $\cos \theta=\frac{B C}{A C}=\frac{1 k}{k \sqrt{2}}=\frac{1}{\sqrt{2}}$

Question 20 

If $\sin \theta=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$, then find the values of cos θ and $\frac{1}{\tan \theta}$.
 
Sol :
$\sin \theta=\frac{x^{2}-y^{2}}{x^{2}+v^{2}}$








We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Or, $\sin \theta=\frac{\text { Perpendicular }}{\text { hypotenuse }}$

$\sin \theta=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ 
$\Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{\mathrm{x}^{2}-\mathrm{y}^{2}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$ 
$ \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{x}^{2}-\mathrm{y}^{2}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$

Let,
Side opposite to angle θ = AB = x2 – y2
and Hypotenuse = AC = x2 + y2
In right angled ∆ABC, we have
(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]
 (x2 – y2 )2 + (BC)2 = (x2 + y2 )2
 (BC)2 = (x2 + y2 )2 – (x2 – y2 )2
Using the identity, a2 – b2 = (a+b)(a – b)
 (BC)2 = [(x2 + y2 + x2 – y2 )][ x2 + y2 –( x2 – y2)]
 (BC)2 = (2x2)(2y2)
 (BC)2 = (4x2y2)
 BC =√4x2y2
 BC = ±2xy
 BC = 2xy [taking positive square root since, side cannot be negative]
$\therefore \cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{\text { BC }}{\text { AC }}=\frac{2 x y}{x^{2}+y^{2}}$
and $\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{x}^{2}-\mathrm{y}^{2}}{2 \mathrm{xy}}$
So, $\frac{1}{\tan \theta}=\frac{1}{\frac{x^{2}-y^{2}}{2 x y}}=\frac{2 x y}{x^{2}-y^{2}}$

Question 21 

Iftan $\theta=\frac{\sqrt{\mathrm{m}^{2}-\mathrm{n}^{2}}}{\mathrm{n}}$, then find the values of sin θ and cos θ.
 
Sol :
Given: $\tan \theta=\frac{\sqrt{\mathrm{m}^{2}-\mathrm{n}^{2}}}{\mathrm{n}}$









We know that,
$\tan \theta=\frac{\sqrt{\mathrm{m}^{2}-\mathrm{n}^{2}}}{\mathrm{n}} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{\sqrt{\mathrm{m}^{2}-\mathrm{n}^{2}}}{\mathrm{n}} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\sqrt{\mathrm{m}^{2}-\mathrm{n}^{2}}}{\mathrm{n}}$
Let,
AB = √(m2 – n2) and BC = n
In right angled ∆ABC, we have
(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]
 (√(m2 – n2))2 + (n)2 = (AC )2
 m2 – n2 + n2 = (AC )2
 (AC)2 = (m2)
 AC = m2
 AC = ±m
 AC = m [taking positive square root since, side cannot be negative]
Now, we have to find the value of cos θ and sin θ
We, know that
$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$
$=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{n}}{\mathrm{m}}$
and
$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$=\frac{A B}{A C}=\frac{\sqrt{m^{2}-n^{2}}}{m}$

Question 22 A 

If sec θ = 2, then find the values of other t–ratios of angle θ.
 
Sol :
Given: sec θ = 2








We know that,
$\sec \theta=\frac{\text { hypotenuse }}{\text { base }}$
$\operatorname{Sec} \theta=\frac{2}{1} \Rightarrow \frac{\mathrm{H}}{\mathrm{B}}=\frac{2}{1} \Rightarrow \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{2}{1}$
Let,
BC = 1k and AC = 2k
where, k is any positive integer.
In right angled ∆ABC, we have
(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]
 (AB)2 + (1k)2 = (2k )2
 (AB)2 + k2 = 4k2
 (AB)2 = 4k2 – k2
 (AB)2 = 3k2
 AB = k3
Now, we have to find the value of other trigonometric ratios.
We, know that
$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$=\frac{A B}{A C}=\frac{k \sqrt{3}}{2 k}=\frac{\sqrt{3}}{2}$
$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$
$=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{1 \mathrm{k}}{2 \mathrm{k}}=\frac{1}{2}$

$\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}$
$=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{k} \sqrt{3}}{1 \mathrm{k}}=\frac{\sqrt{3}}{1}=\sqrt{3}$
$\operatorname{cosec} \theta=\frac{1}{\sin \theta}=\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}$
$\cot \theta=\frac{1}{\tan \theta}=\frac{1}{\sqrt{3}}$

 

Question 22 B 

Given $\sec \theta=\frac{13}{12}$ calculate all other trigonometric ratios.
 
Sol :





Given: $\sec \theta=\frac{13}{12}$

We know that,
$\sec \theta=\frac{\text { hypotenuse }}{\text { base }}$
$\sec \theta=\frac{13}{12} \Rightarrow \frac{\mathrm{H}}{\mathrm{B}}=\frac{13}{12} \Rightarrow \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{13}{12}$
Let,
BC = 12k and AC = 13k
where, k is any positive integer.
In right angled ∆ABC, we have
(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]
 (AB)2 + (12k)2 = (13k )2
 (AB)2 + 144k2 = 169k2
 (AB)2 = 169k2 – 144k2
 (AB)2 = 25k2
 AB = 25k2
 AB =±5k [taking positive square root since, side cannot be negative]
Now, we have to find the value of other trigonometric ratios.
We, know that
$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$=\frac{A B}{A C}=\frac{5 k}{13 k}=\frac{5}{13}$
$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$
$=\frac{B C}{A C}=\frac{12 k}{13 k}=\frac{12}{13}$

$\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}$
$=\frac{A B}{B C}=\frac{5 k}{12 k}=\frac{5}{12}$
$\operatorname{cosec} \theta=\frac{1}{\sin \theta}=\frac{1}{\frac{5}{13}}=\frac{13}{5}$
$\cot \theta=\frac{1}{\tan \theta}=\frac{1}{\frac{5}{12}}=\frac{12}{5}$

Question 23 

If $\operatorname{cosec} \theta=\sqrt{10}$, then find the values of other t–ratios of angle θ.
 
Sol :
Given: cosec θ = √10








We know that,
$\operatorname{cosec} \theta=\frac{\text { hypotenuse }}{\text { perpendicular }}$
$\operatorname{cosec} \theta=\frac{\sqrt{10}}{1} \Rightarrow \frac{\mathrm{H}}{\mathrm{P}}=\frac{\sqrt{10}}{1} \Rightarrow \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\sqrt{10}}{1}$
Let,
AB = 1k and AC = k√10
where, k is any positive integer.
In right angled ∆ABC, we have
(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]
 (1k )2+ (BC)2 = (k√10)2
 (BC)2 = 10k2 – k2
 (BC)2 = 9k2
 BC = 9k2
 BC =±3k [taking positive square root since, side cannot be negative]
Now, we have to find the value of other trigonometric ratios.
We, know that
$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{1 \mathrm{k}}{\mathrm{k} \sqrt{10}}=\frac{1}{\sqrt{10}}$

$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$
$=\frac{B C}{A C}=\frac{3 k}{k \sqrt{10}}=\frac{3}{\sqrt{10}}$

$\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}$
$=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{1 \mathrm{k}}{3 \mathrm{k}}=\frac{1}{3}$
$\sec \theta=\frac{1}{\cos \theta}=\frac{1}{\frac{3}{\sqrt{10}}}=\frac{\sqrt{10}}{3}$
$\cot \theta=\frac{1}{\tan \theta}=\frac{1}{\frac{1}{3}}=3$
 

Question 24 A 

If $\tan \mathrm{A}=\frac{\sqrt{3}}{2}$ then find the values of sin A + cos A.
 
Sol :









We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
Given: $\tan \mathrm{A}=\frac{\sqrt{3}}{2}$
$\Rightarrow \tan \mathrm{A}=\frac{\sqrt{3}}{2}$
$\tan \mathrm{A}=\frac{\sqrt{3}}{2} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{\sqrt{3}}{2} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AB}}=\frac{\sqrt{3}}{2}$
Let,
Side opposite to angle A =BC = k√3
Side adjacent to angle A =AB = 2k
where, k is any positive integer
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (2k)2 + (√3k)2 = (AC)2
 (AC)2 = 4 k2 +3 k2
 (AC)2 = 7 k2
 AC =7 k2
 AC =k7
So, AC = k√7

Now, we will find the sin A and cos A
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle A = BC = k√3
and Hypotenuse = AC = k√7
So, $\sin \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{k} \sqrt{3}}{\mathrm{k} \sqrt{7}}=\frac{\sqrt{3}}{\sqrt{7}}$

Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle A = AB =2k
Hypotenuse = AC = k√7
So, $\cos \mathrm{A}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{2 \mathrm{k}}{\mathrm{k} \sqrt{7}}=\frac{2}{\sqrt{7}}$
Now, we have to find sin A +cos A

Putting values of sin A and cos A, we get
$\sin \mathrm{A}+\cos \mathrm{A}=\frac{\sqrt{3}}{\sqrt{7}}+\frac{2}{\sqrt{7}}=\frac{\sqrt{3}+2}{\sqrt{7}}$

Question 24 B 

If $\sin \theta=\sqrt{3} \cos \theta$ find the value of cos θ – sin θ.
 
Sol :
Given: sin θ =√3cos θ
$\Rightarrow \frac{\sin \theta}{\cos \theta}=\sqrt{3}$
 tan θ = 3









We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
Given: tan θ = √3
$\Rightarrow \tan \theta=\frac{\sqrt{3}}{1}$
$\tan \theta=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\sqrt{3}}{1}$
Let,
Side opposite to angle θ =AC = √3k
Side adjacent to angle θ =AB = 1k
where k is any positive integer
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (AC)2 = (BC)2
 (1k)2 + (√3k)2 = (BC)2
 (BC)2 = 1 k2 +3 k2
 (BC)2 = 4 k2
 BC =2 k2
 BC =±2k
But side BC can’t be negative. So, BC = 2k

Now, we will find the sin B and cos B
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle θ = AC = k√3
and Hypotenuse = BC = 2k
So, $\sin \theta=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{k} \sqrt{3}}{2 \mathrm{k}}=\frac{\sqrt{3}}{2}$

Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
The side adjacent to angle θ = AB =1k
Hypotenuse = BC =2k
So, $\cos \theta=\frac{A B}{B C}=\frac{1 k}{2 k}=\frac{1}{2}$
Now, we have to find the value of cos θ – sin θ
Putting the values of sin θ and cos θ, we get
$\cos \theta-\sin \theta=\frac{1}{2}-\frac{\sqrt{3}}{2}=\frac{1-\sqrt{3}}{2}$



Question 24 C 

If $\tan \theta=\frac{8}{15}$, find the value of 1+ cos2 θ.
 
Sol :







We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
$\tan \theta=\frac{8}{15} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{8}{15} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{8}{15}$
Let,
Side opposite to angle θ =AB = 8k
Side adjacent to angle θ =BC = 15k
where, k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (8k)2 + (15k)2 = (AC)2
 (AC)2 = 64k2+225k2
 (AC)2 = 289 k2
 AC =289 k2
 AC =±17k
But side AC can’t be negative. So, AC = 17k
Now, we will find the cos θ

We know that
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle θ = BC = 15k
and Hypotenuse = AC = 17k
So, $\cos \theta=\frac{B C}{A C}=\frac{15 k}{17 k}=\frac{15}{17}$
Now, we have to find the value of 1+ cos2 θ

Putting the value of cos θ, we get
$1+\cos ^{2} \theta=1+\left(\frac{15}{17}\right)^{2}$
$=1+\frac{225}{289}$
$=\frac{289+225}{289}$
$=\frac{514}{289}$

Question 25 

If $\cot \theta=\frac{7}{8}$, evaluate
(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$
(ii) $\cot ^{2} \theta$
 
Sol :








Given: $\cot \theta=\frac{7}{8}$
We know that,
$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$
Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$
$\cot \theta=\frac{7}{8} \Rightarrow \frac{\mathrm{B}}{\mathrm{P}}=\frac{7}{8} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{7}{8}$
Let,
Side adjacent to angle θ =AB = 7k
Side opposite to angle θ =BC = 8k
where, k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (7k)2 + (8k)2 = (AC)2
 (AC)2 = 49 k2 +69 k2
 (AC)2 = 113 k2
 AC =113 k2
 AC =k113
$\therefore \sin \theta=\frac{\mathrm{P}}{\mathrm{H}}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{8 \mathrm{k}}{\mathrm{k} \sqrt{113}}=\frac{8}{\sqrt{113}}$
and $\cos \theta=\frac{B}{H}=\frac{A B}{A C}=\frac{7 k}{k \sqrt{113}}=\frac{7}{\sqrt{113}}$

(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$
We know that,
(a+b)(a – b) = (a2 – b2)
So, using this identity, we get
$=\frac{(1)^{2}-(\sin \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}$
$=\frac{1-\sin ^{2} \theta}{1-\cos ^{2} \theta}$
$=\frac{1-\left(\frac{8}{\sqrt{113}}\right)^{2}}{1-\left(\frac{7}{\sqrt{113}}\right)^{2}}$
$=\frac{1-\frac{64}{113}}{1-\frac{49}{113}}$
$=\frac{\frac{113-64}{113}}{\frac{113-49}{113}}$
$=\frac{49}{64}$


(ii) cot2 θ
Given $\cot \theta=\frac{7}{8}$
$=\left(\frac{7}{8}\right)^{2}$
$=\frac{49}{64}$

Question 26 A 

If 3 cot A = 4, check whether $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}$=cos2A–sin2 A or not.
 
Sol :
Given: 3cot A = 4
$\Rightarrow \cot A=\frac{4}{3}$








We know that,
$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$
Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$
$\cot A=\frac{4}{3} \Rightarrow \frac{B}{P}=\frac{4}{3} \Rightarrow \frac{A B}{B C}=\frac{4}{3}$
Let,
Side adjacent to angle A =AB = 4k
The side opposite to angle A =BC = 3k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (4k)2 + (3k)2 = (AC)2
 (AC)2 = 16 k2 + 9 k2
 (AC)2 = 25 k2
 AC =25k2
 AC = ±5k [taking positive square root since, side cannot be negative]
$\therefore \tan \mathrm{A}=\frac{1}{\cot \mathrm{A}}=\frac{1}{\frac{4}{3}}=\frac{3}{4}$
$\sin \mathrm{A}=\frac{\mathrm{P}}{\mathrm{H}}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{3 \mathrm{k}}{5 \mathrm{k}}=\frac{3}{5}$
and $\cos A=\frac{B}{H}=\frac{A B}{A C}=\frac{4 k}{5 k}=\frac{4}{5}$

Now, $\mathrm{LHS}=\frac{1-\tan ^{2} \mathrm{A}}{1+\tan ^{2} \mathrm{A}}=\frac{1-\left(\frac{3}{4}\right)^{2}}{1+\left(\frac{3}{4}\right)^{2}}$
$=\frac{1-\frac{9}{16}}{1+\frac{9}{16}}$
$=\frac{\frac{16-9}{16}}{\frac{16+9}{16}}$
$=\frac{7}{25}$ …(i)

And RHS = cos2 A – sin2 A
$=\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}$
$=\frac{16}{25}-\frac{9}{25}$
$=\frac{7}{25}$ …(ii)

From Eqs. (i) and (ii) LHS =RHS
Hence Proved


Question 26 B 

In a right triangle ABC, right angled at B, if tan A = 1, then verify that 2 sin A cos A = 1.
 
Sol :
tan A = 1
As we know
$\tan \theta=\frac{\text { perpedicular }}{\text { base }}$
Now construct a right angle triangle right angled at B such that
 BAC = θ
Hence perpendicular = BC = 1 and base = AB = 1












By Pythagoras theorem,
AC2 = AB2 + BC2
 AC2 = (1)2 + (1)2
 AC2 = 2
 AC = 
As,
$\sin \theta=\frac{\text { perpendicular }}{\text { hypotenuse }}$
 and $\cos \theta=\frac{\text { base }}{\text { hypotenuse }}$
 $\sin \theta=\frac{1}{\sqrt{2}}$ and $\cos \theta=\frac{1}{\sqrt{2}}$
Hence,
2 sin A cos A=$2 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}$
 2 sin A cos A=$2 \times \frac{1}{2}$
 2 sin A cos A=1
= R.H.S
Hence proved.

Question 27 

If 4sin2 θ =3 and 0o < θ <90o, find the value of 1 + cos θ.
 
Sol :
4sin2 θ =3
$\Rightarrow \sin ^{2} \theta=\frac{3}{4}$
$\Rightarrow \sin \theta=\pm \frac{\sqrt{3}}{2}$

But it is given 0o< θ <90o
So, $\sin \theta=\frac{\sqrt{3}}{2}$
$\sin \theta=\frac{\sqrt{3}}{2} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{\sqrt{3}}{2}$

Let, P =k√3 and H =2k
In right angled ∆ABC, we have
B2 + P2 = H2
 B2 + (k√3)2 = (2k)2
 B2 + 3k2 = 4k2
 B2 = 4k2 – 3k2
 B2 = k2
 B = ±k
 B = k [taking positive square root since, side cannot be negative]
$\therefore \cos \theta=\frac{B}{H}=\frac{k}{2 k}=\frac{1}{2}$
So, $1+\cos \theta=1+\frac{1}{2}=\frac{2+1}{2}=\frac{3}{2}$

Question 28 

If $\tan \theta=\frac{p}{q}$find the value of $\frac{p \sin \theta-q \cos \theta}{p \sin \theta+q \cos \theta}$.
 
Sol :
Given:$\tan \theta=\frac{p}{q}$

Now, $\frac{p \sin \theta-q \cos \theta}{p \sin \theta+q \cos \theta}$
$\Rightarrow \frac{\cos \theta\left(\frac{p \sin \theta}{\cos \theta}-q\right)}{\cos \theta\left(\frac{p \sin \theta}{\cos \theta}+q\right)}$
$\Rightarrow \frac{p \tan \theta-q}{p \tan \theta+q}$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$

$\Rightarrow \frac{p\left(\frac{p}{q}\right)-q}{p\left(\frac{p}{q}\right)+q}$
$\Rightarrow \frac{\frac{p^{2}-q^{2}}{q}}{\frac{p^{2}+q^{2}}{q}}$
$\Rightarrow \frac{p^{2}-q^{2}}{p^{2}+q^{2}}$
$\therefore \frac{p \sin \theta-q \cos \theta}{p \sin \theta+q \cos \theta}=\frac{p^{2}-q^{2}}{p^{2}+q^{2}}$

Question 29 

If 13 cos θ = 5, $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}$.
 
Sol :
Given: 13 cosθ = 5
$\Rightarrow \cos \theta=\frac{5}{13}$









We know that,
$\cos \theta=\frac{\text { Base }}{\text { hypotenuse }}$
$\cos \theta=\frac{5}{13} \Rightarrow \frac{B}{H}=\frac{5}{13}$

Let AB =5k and BC = 13k
In right angled ∆ABC, we have
B2 + P2 = H2
 (5k)2 + P2 = (13k)2
 P2 + 25k2 = 169k2
 P2 = 169k2 – 25k2
 P2 = 144k2
 P =144k2
 P = ±12k
 P = 12k [taking positive square root since, side cannot be negative]
$\therefore \sin \theta=\frac{P}{H}=\frac{12}{13}$

Now, $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}$
$=\frac{\frac{12}{13}+\frac{5}{13}}{\frac{12}{13}-\frac{5}{13}}$
$=\frac{17}{7}$

Question 30 

If $\sec \theta=\frac{13}{5}$, show that $\frac{2 \sin \theta-3 \cos \theta}{4 \sin \theta-9 \cos \theta}=3$.
Sol :
Given: 
$\sec \theta=\frac{13}{5}$








We know that,
$\sec \theta=\frac{\text { hypotenuse }}{\text { base }}$
$\operatorname{Sec} \theta=\frac{13}{5} \Rightarrow \frac{\mathrm{H}}{\mathrm{B}}=\frac{13}{5} \Rightarrow \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{13}{5}$
Let,
BC = 5k and AC = 13k
where, k is any positive integer.
In right angled ∆ABC, we have
(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]
 (AB)2 + (5k)2 = (13k )2
 (AB)2 + 25k2 = 169k2
 (AB)2 = 169k2 – 25k2
 (AB)2 = 144k2
 AB = 144k2
 AB =±12k [taking positive square root since, side cannot be negative]
Now, we have to find the value of other trigonometric ratios.
We, know that
$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$=\frac{A B}{A C}=\frac{12 k}{13 k}=\frac{12}{13}$

$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$
$=\frac{B C}{A C}=\frac{5 k}{13 k}=\frac{5}{13}$

Now, LHS $=\frac{2 \sin \theta-3 \cos \theta}{4 \sin \theta-9 \cos \theta}$
$=\frac{2\left(\frac{12}{13}\right)-3\left(\frac{5}{13}\right)}{4\left(\frac{12}{13}\right)-9\left(\frac{5}{13}\right)}$
$=\frac{24-15}{48-45}$
$=\frac{9}{3}$
=3 =RHS
Hence Proved

Question 31 

If 2 tan θ = 1, find the value of $\frac{3 \cos \theta+\sin \theta}{2 \cos \theta-\sin \theta}$.
 
Sol :
Given: 2 tan θ = 1
$\Rightarrow \tan \theta=\frac{1}{2}$








We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
$\tan \theta=\frac{1}{2} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{1}{2} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{1}{2}$
Let,
Side opposite to angle θ =AB = 1k
Side adjacent to angle θ =BC = 2k
where, k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (k)2 + (2k)2 = (AC)2
 (AC)2 = k2+4k2
 (AC)2 = 5k2
 AC =5k2
 AC =±k5
But side AC can’t be negative. So, AC = k√5

Now, we will find the sin θ and cos θ

We know that
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle θ = BC = 2k
and Hypotenuse = AC = k√5
So,$\cos \theta=\frac{B C}{A C}=\frac{2 k}{k \sqrt{5}}=\frac{2}{\sqrt{5}}$
And $\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle θ =AB = 1k
And Hypotenuse =AC = k√5
So, $\sin \theta=\frac{A B}{A C}=\frac{1 k}{k \sqrt{5}}=\frac{1}{\sqrt{5}}$
Now, $\frac{3 \cos \theta+\sin \theta}{2 \cos \theta-\sin \theta}$
$=\frac{3\left(\frac{2}{\sqrt{5}}\right)+\frac{1}{\sqrt{5}}}{2\left(\frac{2}{\sqrt{5}}\right)-\frac{1}{\sqrt{5}}}$

$=\frac{6+1}{4-1}$

$=\frac{7}{3}$


Question 32 

If 5 tan α = 4, show that $\frac{5 \sin \alpha-3 \cos \alpha}{5 \sin \alpha+2 \cos \alpha}=\frac{1}{6}$.
 
Sol :
Given: 5 tan = 4
$\Rightarrow \tan \alpha=\frac{4}{5}$








We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
$\tan \alpha=\frac{4}{5} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{4}{5} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{4}{5}$

Let,
The side opposite to angle α =AB = 4k
The side adjacent to angle α =BC = 5k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (4k)2 + (5k)2 = (AC)2
 (AC)2 = 16k2+25k2
 (AC)2 = 41k2
 AC =41k2
 AC =±k41
But side AC can’t be negative. So, AC = k√41
Now, we will find the sin α and cos α
We know that
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle α = BC = 5k
and Hypotenuse = AC = k√41
So, $\cos \alpha=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{5 \mathrm{k}}{\mathrm{k} \sqrt{41}}=\frac{5}{\sqrt{41}}$
And $\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle α =AB = 4k
And Hypotenuse =AC = k√5
So, $\sin \alpha=\frac{A B}{A C}=\frac{4 k}{k \sqrt{4} 1}=\frac{4}{\sqrt{41}}$

Now, LHS $=\frac{5 \sin \alpha-3 \cos \alpha}{5 \sin \alpha+2 \cos \alpha}$
$=\frac{5\left(\frac{4}{\sqrt{41}}\right)-3\left(\frac{5}{\sqrt{41}}\right)}{5\left(\frac{4}{\sqrt{41}}\right)+2\left(\frac{5}{\sqrt{41}}\right)}$
$=\frac{20-15}{20+10}$
$=\frac{5}{30}$
$=\frac{1}{6}$
 = RHS
Hence Proved


Question 33 

If $\cot \theta=\frac{3}{4}$prove that $\sqrt{\frac{\sec \theta+\operatorname{cosec} \theta}{\sec \theta-\operatorname{cosec} \theta}}=\sqrt{7}$.
 
Sol :









We know that,
$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$
Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$
$\cot \theta=\frac{3}{4} \Rightarrow \frac{\mathrm{B}}{\mathrm{P}}=\frac{3}{4} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{3}{4}$
Let,
Side adjacent to angle θ =AB = 3k
The side opposite to angle θ =BC = 4k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (3k)2 + (4k)2 = (AC)2
 (AC)2 = 9k2 +16k2
 (AC)2 = 25k2
 AC =25k2
 AC =±5k
But side AC can’t be negative. So, AC = 5k

Now, we will find the sin θ
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle θ = BC = 4k
and Hypotenuse = AC = 5k
So, $\sin \theta=\frac{B C}{A C}=\frac{4 k}{5 k}=\frac{4}{5}$

Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
The side adjacent to angle θ = AB =3k
Hypotenuse = AC =5k
So, $\cos \theta=\frac{A B}{A C}=\frac{3 k}{5 k}=\frac{3}{5}$
$\therefore \sec \theta=\frac{1}{\cos \theta}=\frac{1}{\frac{3}{5}}=\frac{5}{3}$
And
$\operatorname{cosec} \theta=\frac{1}{\sin \theta}=\frac{1}{\frac{4}{5}}=\frac{5}{4}$

Now, LHS$=\sqrt{\frac{\sec \theta+\operatorname{cosec} \theta}{\sec \theta-\operatorname{cosec} \theta}}$
$=\sqrt{\frac{\left(\frac{5}{3}\right)+\left(\frac{5}{4}\right)}{\left(\frac{5}{3}\right)-\left(\frac{5}{4}\right)}}$
$=\sqrt{\frac{\left(\frac{20+15}{12}\right)}{\left(\frac{20-15}{12}\right)}}$
$=\sqrt{\frac{35}{5}}$
$=\sqrt{7}$ = RHS
Hence Proved

Question 34

If $\cot \theta=\frac{1}{\sqrt{3}}$ verify that: $\frac{1-\cos ^{2} \theta}{2-\sin ^{2} \theta}=\frac{3}{5}$.
 
Sol :









We know that,
$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$
Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$
$\cot \theta=\frac{1}{\sqrt{3}} \Rightarrow \frac{\mathrm{B}}{\mathrm{P}}=\frac{1}{\sqrt{3}} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{1}{\sqrt{3}}$

Let,
Side adjacent to angle θ =AB = 1k
Side opposite to angle θ =AC = k√3
where, k is any positive integer
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (AC)2 = (BC)2
 (1k)2 + (√3k)2 = (BC)2
 (BC)2 = 1 k2 +3 k2
 (BC)2 = 4 k2
 BC =2 k2
 BC =±2k
But side BC can’t be negative. So, BC = 2k
Now, we will find the sin θ and cos θ
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle θ = AC = k√3
and Hypotenuse = BC = 2k
So$\sin \theta=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{k} \sqrt{3}}{2 \mathrm{k}}=\frac{\sqrt{3}}{2}$

Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle θ = AB =1k
Hypotenuse = BC =2k
So, $\cos \theta=\frac{A B}{B C}=\frac{1 k}{2 k}=\frac{1}{2}$

Now, LHS $=\frac{1-\cos ^{2} \theta}{2-\sin ^{2} \theta}$
$=\frac{1-\left(\frac{1}{2}\right)^{2}}{2-\left(\frac{\sqrt{3}}{2}\right)^{2}}$
$=\frac{1-\frac{1}{4}}{2-\frac{3}{4}}$
$=\frac{\frac{4-1}{4}}{\frac{8-3}{4}}$
$=\frac{3}{5}$ = RHS
Hence Proved

Question 35 

If $\tan \theta=\frac{x}{y}$ find the value of x sin θ + y cos θ.
 
Sol :





We know that,

$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
$\tan \theta=\frac{x}{y} \Rightarrow \frac{P}{B}=\frac{x}{y} \Rightarrow \frac{A B}{B C}=\frac{x}{y}$
Let,
Side opposite to angle θ =AB = x
Side adjacent to angle θ =BC = y
where, k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (x)2 + (y)2 = (AC)2
 (AC)2 = x2+y2
 AC =( x2+y2)
Now, we will find the sin θ and cos θ
We know that
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle θ = BC = y
and Hypotenuse = AC = √( x2+y2)
So,$\cos \theta=\frac{B C}{A C}=\frac{y}{\sqrt{x^{2}+y^{2}}}$
And $\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle θ =AB = x
And Hypotenuse =AC = √( x2+y2)
So, $\sin \theta=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}$
Now, x sin θ +y cos θ
$=\mathrm{x}\left(\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}\right)+\mathrm{y}\left(\frac{\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}\right)$
$=\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}}}$
= √( x2+y2)


Question 36 

If $\sin \theta=\frac{3}{5}$, find the value of tan2θ + sinθ cosθ + cotθ.
 

Sol :





Given: $\sin \theta=\frac{3}{5}$

We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypollyuse }}$
$\sin \theta=\frac{3}{5} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{3}{5} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{3}{5}$
Let,
Perpendicular =AB =3k
and Hypotenuse =AC =5k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
In right angled  ABC, we have
 (AB)2 + (BC)2 = (AC)2
 (3k)2 + (BC)2 = (5k)2
 9k2 + (BC)2 = 25k2
 (BC)2 = 25 k2 –9k2
 (BC)2 = 16k2
 BC =16k2
 BC =±4k
But side BC can’t be negative. So, BC = 4k
Now, we have to find the value of cos θ and tan θ
We know that,
$\cos \theta=\frac{\text { base }}{\text { hypotenuse }}$
The side adjacent to angle θ or base = BC =4k
Hypotenuse = AC =5k
So,$\cos \theta=\frac{4 k}{5 k}=\frac{4}{5}$
Now,
We know that,
$\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
Perpendicular = AB =3k
Base = BC =4k
So, $\tan \theta=\frac{3 \mathrm{k}}{4 \mathrm{k}}=\frac{3}{4}$
$\cot \theta=\frac{1}{\tan \theta}=\frac{1}{\frac{3}{4}}=\frac{4}{3}$


Now, tan2 θ + sin θ cos θ + cot θ

$=\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{5}\right)\left(\frac{4}{5}\right)+\left(\frac{4}{3}\right)$

$=\left(\frac{9}{16}\right)+\left(\frac{13}{25}\right)+\left(\frac{4}{3}\right)$

$=\frac{675+576+1600}{16 \times 25 \times 3}$

$=\frac{2851}{1200}$


Question 37 

If 4cot θ = 3, show that $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=7$.
 

Sol :
Given: $\cot \theta=\frac{3}{4}$





We know that,

$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$
Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$
$\cot \theta=\frac{3}{4} \Rightarrow \frac{\mathrm{B}}{\mathrm{P}}=\frac{3}{4} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{3}{4}$
Let,
Side adjacent to angle θ =AB = 3k
The side opposite to angle θ =BC = 4k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (3k)2 + (4k)2 = (AC)2
 (AC)2 = 9k2 +16k2
 (AC)2 = 25k2
 AC =25k2
 AC =±5k
But side AC can’t be negative. So, AC = 5k

Now, we will find the sin θ
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle θ = BC = 4k
and Hypotenuse = AC = 5k
So, $\sin \theta=\frac{B C}{A C}=\frac{4 k}{5 k}=\frac{4}{5}$

Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle θ = AB =3k
Hypotenuse = AC =5k
So, $\cos \theta=\frac{A B}{A C}=\frac{3 k}{5 k}=\frac{3}{5}$

Now, LHS $=\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}$

$=\frac{\frac{4}{5}+\frac{3}{5}}{\frac{4}{5}-\frac{3}{5}}$

$=\frac{7}{1}$

= 7 = RHS
Hence Proved


Question 38 

If $\sin \theta=\frac{\mathrm{m}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}}$, prove that $\mathrm{m} \sin \theta+\mathrm{n} \cos \theta=\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}$
 

Sol :
Given: $\sin \theta=\frac{\mathrm{m}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}}$






We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$\sin \theta=\frac{\mathrm{m}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{\mathrm{m}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{m}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}}$

Let,
Perpendicular =AB =m
and Hypotenuse =AC =√(m2 + n2)
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
In right angled  ABC, we have
 (AB)2 + (BC)2 = (AC)2
 (m)2 + (BC)2 = (√(m2 + n2))2
 m2 + (BC)2 = m2 + n2
 (BC)2 = m2 + n2 – m2
 (BC)2 = n2
 BC =n2
 BC =±n
But side BC can’t be negative. So, BC = n
Now, we have to find the value of cos θ and tan θ

We know that,
$\cos \theta=\frac{\text { base }}{\text { hypotenuse }}$
Side adjacent to angle θ or base = BC =n
Hypotenuse = AC =√(m2 + n2)
So, $\cos \theta=\frac{n}{\sqrt{m^{2}+n^{2}}}$

Now, LHS = m sin θ +n cosθ
$=\mathrm{m}\left(\frac{\mathrm{m}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}}\right)+\mathrm{n}\left(\frac{\mathrm{n}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}}\right)$
$=\frac{\mathrm{m}^{2}+\mathrm{n}^{2}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}}$
=√(m2 + n2) = RHS
Hence Proved


Question 39 

If $\cos \alpha=\frac{12}{13}$ show that $\sin \alpha(1-\tan \alpha)=\frac{35}{156}$
 
Sol :









We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Or $\cos \theta=\frac{\text { base }}{\text { Hypotenuse }}$
$\cos \alpha=\frac{12}{13} \Rightarrow \frac{\mathrm{B}}{\mathrm{H}}=\frac{12}{13} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{12}{13}$

Let,
Base =BC = 12k
Hypotenuse =AC = 13k
Where, k ia any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
 (AB)2 + (BC)2 = (AC)2
 (AB)2 + (12k)2 = (13k)2
 (AB)2 + 144k2 = 169k2
 (AB)2 = 169 k2 –144 k2
 (AB)2 = 25 k2
 AB =25 k2
 AB =±5k
But side AB can’t be negative. So, AB = 5k
Now, we have to find sin α and tan α

We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle α = AB =5k
And Hypotenuse = AC =13k
So, $\sin \alpha=\frac{5 \mathrm{k}}{13 \mathrm{k}}=\frac{5}{13}$

We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Side opposite to angle α = AB =5k
Side adjacent to angle α = BC =12k
So, $\tan \alpha=\frac{5 \mathrm{k}}{12 \mathrm{k}}=\frac{5}{12}$
Now, LHS = sin α (1 – tan α)

$=\frac{5}{13}\left(1-\frac{5}{12}\right)$

$=\frac{5}{13}\left(\frac{12-5}{12}\right)$

$=\frac{35}{156}$ = RHS
Hence Proved

Question 40 

If $\mathrm{q} \cos \theta=\sqrt{\mathrm{q}^{2}-\mathrm{p}^{2}}$, prove that q sin θ = p.
 
Sol :
Given : q cos θ = √(q2 – p2)
$\Rightarrow \cos \theta=\frac{\sqrt{\mathrm{q}^{2}-\mathrm{p}^{2}}}{\mathrm{q}}$






We know that,

$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Or $\cos \theta=\frac{\text { base }}{\text { Hypotenuse }}$
$\cos \theta=\frac{\sqrt{\mathrm{q}^{2}-\mathrm{p}^{2}}}{\mathrm{q}} \Rightarrow \frac{\mathrm{B}}{\mathrm{H}}=\frac{\sqrt{\mathrm{q}^{2}-\mathrm{p}^{2}}}{\mathrm{q}} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\sqrt{\mathrm{q}^{2}-\mathrm{p}^{2}}}{\mathrm{q}}$

Let,
Base =BC = √(q2 – p2)
Hypotenuse =AC = q
Where, k ia any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
 (AB)2 + (BC)2 = (AC)2
 (AB)2 + (√(q2 – p2))2 = (q)2
 (AB)2 + (q2 – p2) = q2
 (AB)2 = q2 – q2 + p2)
 (AB)2 = p2
 AB =p2
 AB =±p
But side AB can’t be negative. So, AB = p
Now, we have to find sin θ

We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
The side opposite to angle θ = AB =p
And Hypotenuse = AC =q
So, $\sin \theta=\left(\frac{p}{q}\right)$
Now, LHS = q sin θ
$=\mathrm{q}\left(\frac{\mathrm{p}}{\mathrm{q}}\right)$
= q = RHS
Hence Proved


Question 41 

If $\sin \theta=\frac{3}{5}$, show that : 
$\frac{\cos \theta-\frac{1}{\tan \theta}}{2 \cot \theta}=-\frac{1}{5}$
 
Sol :
Given: $\sin \theta=\frac{3}{5}$





We know that,

$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$\sin \theta=\frac{3}{5} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{3}{5} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{3}{5}$
Let,
Perpendicular =AB =3k
and Hypotenuse =AC =5k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
In right angled  ABC, we have
 (AB)2 + (BC)2 = (AC)2
 (3k)2 + (BC)2 = (5k)2
 9k2 + (BC)2 = 25k2
 (BC)2 = 25 k2 –9k2
 (BC)2 = 16k2
 BC =16k2
 BC =±4k
But side BC can’t be negative. So, BC = 4k
Now, we have to find the value of cos θ and tan θ

We know that,
$\cos \theta=\frac{\text { base }}{\text { hypotenuse }}$
The side adjacent to angle θ or base = BC =4k
Hypotenuse = AC =5k
So, $\cos \theta=\frac{4 k}{5 k}=\frac{4}{5}$
Now,
We know that,
$\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
Perpendicular = AB =3k
Base = BC =4k
So, $\tan \theta=\frac{3 \mathrm{k}}{4 \mathrm{k}}=\frac{3}{4}$
$\cot \theta=\frac{1}{\tan \theta}=\frac{1}{\frac{3}{4}}=\frac{4}{3}$
Now, LHS $=\frac{\cos \theta-\frac{1}{\tan \theta}}{2 \cot \theta}$
$=\frac{\left(\frac{4}{5}\right)-\left(\frac{1}{\frac{3}{4}}\right)}{2\left(\frac{4}{3}\right)}$
$=\frac{\left(\frac{4}{5}\right)-\left(\frac{4}{3}\right)}{\left(\frac{8}{3}\right)}$
$=\frac{\frac{12-20}{15}}{\left(\frac{8}{3}\right)}$
$=\frac{\left(-\frac{8}{15}\right)}{\left(\frac{8}{3}\right)}$
$=-\frac{1}{5}$ = RHS
Hence Proved

Question 42 A 

Find the value of
cos A sin B + sin A. cos B, if sin A= 4/5 and cos B = 12/13.
Sol :






Given: $\sin A=\frac{4}{5}$ and $\cos B=\frac{12}{13}$
To find: cos A sin B + sin A cos B
As, we have the value of sin A and cos B but we don’t have the value of cos A and sin B
So, First we find the value of cos A and sin B
$\sin A=\frac{4}{5}$

We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$

$\sin A=\frac{4}{5} \Rightarrow \frac{P}{H}=\frac{4}{5}$
Let,
Side opposite to angle A = 4k
and Hypotenuse = 5k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
 (P)2 + (B)2 = (H)2
 (4k)2 + (B)2 = (5)2
 16 k2 + (B)2 = 25 k2
 (B)2 = 25 k2 –16 k2
 (B)2 = 9 k2
 B =9 k2
 B =±3k [taking positive square root since, side cannot be negative]
So, Base = 3k
Now, we have to find the value of cos A
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle A =3k
Hypotenuse =5k
So, $\cos \mathrm{A}=\frac{3 \mathrm{k}}{5 \mathrm{k}}=\frac{3}{5}$
Now, we have to find the sin B





We know that,

$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
$\cos \mathbf{B}=\frac{12}{13} \Rightarrow \frac{B}{H}=\frac{12}{13}$
Let,
Side adjacent to angle B =12k
Hypotenuse =13k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
 (B)2 + (P)2 = (H)2
 (12k)2 + (P)2 = (13)2
 144 k2 + (P)2 = 169 k2
 (P)2 = 169 k2 –144 k2
 (P)2 = 25 k2
 P =25 k2
 P =±5k [taking positive square root since, side cannot be negative]
So, Perpendicular = 5k
Now, we have to find the value of sin B

We know that,
$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$\sin \mathrm{B}=\frac{\mathrm{P}}{\mathrm{H}}=\frac{5 \mathrm{k}}{13 \mathrm{k}}=\frac{5}{13}$
Now, cos A sin B + sin A cos B

Putting the values of sin A, sin B cos A and Cos B, we get

$\Rightarrow\left(\frac{3}{5}\right)\left(\frac{5}{13}\right)+\left(\frac{4}{5}\right)\left(\frac{12}{13}\right)$

$\Rightarrow \frac{15+48}{5 \times 13}$

$\Rightarrow \frac{63}{65}$


Question 42 B 

Find the value of
sin A. cos B – cos A. sin B, if tan A= √3 and sin B = 1/2.
Sol :






Given: tan A =√3 and $\sin B=\frac{1}{2}$
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$\sin \mathrm{B}=\frac{1}{2} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{1}{2}$
Let,
Side opposite to angle θ = 1k
and Hypotenuse = 2k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
 (AC)2 + (BC)2 = (AB)2
 (1k)2 + (BC)2 = (2k)2
 k2 + (BC)2 = 4k2
 (BC)2 = 4k2 –k2
 (BC)2 = 3 k2
 BC =3k2
 BC =k3
So, BC = k√3

Now, we have to find the value of cos B
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
The side adjacent to angle B = BC =k√3
Hypotenuse = AB =2k
So, $\cos \mathbf{B}=\frac{k \sqrt{3}}{2 k}=\frac{\sqrt{3}}{2}$

We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
Given: tan A = √3
$\Rightarrow \tan \mathrm{A}=\frac{\sqrt{3}}{1}$
$\tan \mathrm{A}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AB}}=\frac{\sqrt{3}}{1}$
Let,
The side opposite to angle A =BC = √3k
The side adjacent to angle A =AB = 1k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (1k)2 + (√3k)2 = (AC)2
 (AC)2 = 1 k2 +3 k2
 (AC)2 = 4 k2
 AC =2 k2
 AC =±2k
But side AC can’t be negative. So, AC = 2k
Now, we will find the sin A and cos A
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle A = BC = k√3
and Hypotenuse = AC = 2k
So, $\sin \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{k} \sqrt{3}}{2 \mathrm{k}}=\frac{\sqrt{3}}{2}$

Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
The side adjacent to angle A = AB =1k
Hypotenuse = AC =2k

So, $\cos \mathrm{A}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{1 \mathrm{k}}{2 \mathrm{k}}=\frac{1}{2}$
Now, sin A. cos B – cos A. sin B

Putting the values of sin A, sin B cos A and Cos B, we get

$\Rightarrow\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$

$\Rightarrow \frac{3}{4}-\frac{1}{4}$

$\Rightarrow \frac{2}{4}$

$=\frac{1}{2}$


Question 42 C 

Find the value of
sin A. cos B + cos A. sin B. if $\tan \mathrm{A}=\frac{1}{\sqrt{3}}$and tan B = √3.
Sol :
Given:







$\tan \mathrm{A}=\frac{1}{\sqrt{3}}$
$\tan \mathrm{A}=\frac{1}{\sqrt{3}} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{1}{\sqrt{3}}$
Let,
Side opposite to angle A =BC = 1k
Side adjacent to angle A =AB = k√3
where, k is any positive integer
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (√3k)2 + (1k)2 = (AC)2
 (AC)2 = 1 k2 +3 k2
 (AC)2 = 4 k2
 AC =2 k2
 AC =±2k
But side AC can’t be negative. So, AC = 2k

Now, we will find the sin A and cos A

$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle A = BC = k
and Hypotenuse = AC = 2k
So, $\operatorname{Sin} \mathbf{A}=\frac{B C}{A C}=\frac{1 k}{2 k}=\frac{1}{2}$

Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle A = AB =k√3
Hypotenuse = AC =2k
So, $\cos \mathbf{A}=\frac{A B}{B C}=\frac{k \sqrt{3}}{2 k}=\frac{\sqrt{3}}{2}$
Now,






Given: tan B = √3
$\Rightarrow \tan \mathrm{B}=\frac{\sqrt{3}}{1}$
$\tan \mathrm{B}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\sqrt{3}}{1}$
Let,
Side opposite to angle B =AC = √3k
Side adjacent to angle B =AB = 1k
where, k is any positive integer
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (AC)2 = (BC)2
 (1k)2 + (√3k)2 = (BC)2
 (BC)2 = 1 k2 +3 k2
 (BC)2 = 4 k2
 BC =2 k2
 BC =±2k
But side BC can’t be negative. So, BC = 2k

Now, we will find the sin B and cos B
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle B = AC = k√3
and Hypotenuse = BC = 2k
So, $\sin \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{k} \sqrt{3}}{2 \mathrm{k}}=\frac{\sqrt{3}}{2}$

Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle B = AB =1k
Hypotenuse = BC =2k
So, $\cos \mathbf{B}=\frac{A B}{B C}=\frac{1 k}{2 k}=\frac{1}{2}$
Now, sin A. cos B + cos A. sin B

Putting the values of sin A, sin B cos A and Cos B, we get

$\Rightarrow\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)+\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$

$\Rightarrow \frac{1}{4}+\frac{3}{4}$

$\Rightarrow \frac{4}{4}$

=1

Question 42 D 

Find the value of
$\frac{\tan A+\tan B}{1-\tan A \cdot \tan B}$, if sin A = $\frac{1}{\sqrt{2}}$and cos $\mathrm{B}=\frac{\sqrt{3}}{2}$
Sol :
Given $: \sin \mathrm{A}=\frac{1}{\sqrt{2}}$ and $\cos \mathrm{B}=\frac{\sqrt{3}}{2}$
$\sin \mathrm{A}=\frac{1}{\sqrt{2}}$

We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$\sin \mathrm{A}=\frac{1}{\sqrt{2}} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{1}{\sqrt{2}}$

Let,
Side opposite to angle A = k
and Hypotenuse = k√2
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
 (P)2 + (B)2 = (H)2
 (k)2 + (B)2 = (k√2)2
 k2 + (B)2 = 2k2
 (B)2 = 2k2 – k2
 (B)2 = k2
 B =k2
 B =±k [taking positive square root since, side cannot be negative]
So, Base = k
Now, we have to find the value of tan A

We know that,
$\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
So, $\tan \mathrm{A}=\frac{\mathrm{k}}{\mathrm{k}}=1$


Now, we have to find the tan B
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
$\cos \mathbf{B}=\frac{\sqrt{3}}{2} \Rightarrow \frac{B}{H}=\frac{\sqrt{3}}{2}$
Let,
Side adjacent to angle B =k√3
Hypotenuse =2k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
 (B)2 + (P)2 = (H)2
 (k√3)2 + (P)2 = (2k)2
 3k2 + (P)2 = 4k2
 (P)2 = 4k2 –3 k2
 (P)2 = k2
 P =k2
 P =±k [taking positive square root since, side cannot be negative]
So, Perpendicular = k
Now, we have to find the value of sin B
We know that,
$\tan \theta=\frac{\text { perpendicular }}{\text { base }}$
So, $\tan \mathrm{B}=\frac{\mathrm{k}}{\mathrm{k} \sqrt{3}}=\frac{1}{\sqrt{3}}$

Now, $\frac{\tan A+\tan B}{1-\tan A \tan B}$
$\Rightarrow \frac{(1)+\left(\frac{1}{\sqrt{3}}\right)}{1-(1)\left(\frac{1}{\sqrt{3}}\right)}$

$\Rightarrow \frac{\frac{\sqrt{3}+1}{\sqrt{3}}}{\frac{\sqrt{3}-1}{\sqrt{3}}}$

$\Rightarrow \frac{\sqrt{3}+1}{\sqrt{3}-1}$


Now, multiply and divide by the conjugate of √3 – 1, we get
$\Rightarrow \frac{\sqrt{3}+1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$
$\Rightarrow \frac{(\sqrt{3}+1)^{2}}{(\sqrt{3})^{2}-(1)^{2}}$ [ (a  b)(a+b) = (a2 – b2)]

$\Rightarrow \frac{3+1+2 \sqrt{3}}{3-1}$

$\Rightarrow \frac{4+2 \sqrt{3}}{2}$

 2+3


Question 42 E

Find the value of
sec A. tan A+tan2A – cosec A, if tan A =2
 
Sol :
Given: tan A = 2  tan2A = 4
We know that, sec2 A = 1+ tan2A
 sec2 A = 1 + 4
 sec2 A = 5
 sec A =5
$\Rightarrow \cos A=\frac{1}{\sqrt{5}}$

Now, we know that tan A$=\frac{\sin A}{\cos A}$
$\Rightarrow 2=\frac{\sin A}{\frac{1}{\sqrt{5}}}$
 2 =√5 sin A

$\Rightarrow \sin A=\frac{2}{\sqrt{5}}$

$\Rightarrow \operatorname{cosec} A=\frac{\sqrt{5}}{2}$

Now, putting all the values in the given equation, we get
sec A. tan A+tan2A – cosec A

$\Rightarrow(\sqrt{5})(2)+(4)-\left(\frac{\sqrt{5}}{2}\right)$

$\Rightarrow \frac{4 \sqrt{5}+8-\sqrt{5}}{2}$

$\Rightarrow \frac{3 \sqrt{5}+8}{2}$


Question 42 F

Find the value of
$\frac{1}{\tan \mathrm{A}}+\frac{\sin \mathrm{A}}{1+\cos \mathrm{A}}$, if cosec A = 2
Sol :
Given: cosec A =2
Now, we have to find $\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}$
First, we simplify the above given trigonometry equation, we get
$\frac{1}{\frac{\sin A}{\cos A}}+\frac{\sin A}{1+\cos A}$
$\Rightarrow \frac{\cos A}{\sin A}+\frac{\sin A}{1+\cos A}$

Taking the LCM, we get
$\Rightarrow \frac{\cos A(1+\cos A)+\sin A(\sin A)}{(\sin A)(1+\cos A)}$
$\Rightarrow \frac{\cos A+\cos ^{2} A+\sin ^{2} A}{\sin A(1+\cos A)}$ [ cos2θ +sin2 θ = 1]
$\Rightarrow \frac{\cos A+1}{\sin A(1+\cos A)}$
$\Rightarrow \frac{1}{\sin A}$ [ cosec θ $=\frac{1}{\sin \theta}$ ]
 cosec A
 2

Question 43 A

If $\sin \mathrm{B}=\frac{1}{2}$, prove that : 3 cos B – 4cos3 B = 0
 
Sol :
Given: $\sin B=\frac{1}{2}$





We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$\sin B=\frac{1}{2} \Rightarrow \frac{P}{H}=\frac{1}{2} \Rightarrow \frac{A B}{A C}=\frac{1}{2}$
Let,
Perpendicular =AB =k
and Hypotenuse =AC =2k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
In right angled  ABC, we have
 (AB)2 + (BC)2 = (AC)2
 (k)2 + (BC)2 = (2k)2
 k2 + (BC)2 = 4k2
 (BC)2 = 4k2 –k2
 (BC)2 = 3k2
 BC =3k2
 BC =k3
So, BC = k√3
Now, we have to find the value of cos B

We know that,
$\cos \theta=\frac{\text { base }}{\text { hypotenuse }}$
Side adjacent to angle B or base = BC = k√3
Hypotenuse = AC =2k
So, $\cos \mathrm{B}=\frac{\mathrm{k} \sqrt{3}}{2 \mathrm{k}}=\frac{\sqrt{3}}{2}$
Now, LHS = 3 cos B – 4cos3 B

$\Rightarrow 3\left(\frac{\sqrt{3}}{2}\right)-4\left(\frac{\sqrt{3}}{2}\right)^{3}$

$\Rightarrow \frac{3 \sqrt{3}}{2}-4\left(\frac{3 \sqrt{3}}{8}\right)$

$\Rightarrow \frac{3 \sqrt{3}}{2}-\frac{3 \sqrt{3}}{2}=0$

=RHS
Hence Proved

Question 43 B

If $\cos \theta=\frac{\sqrt{3}}{2}$, prove that: 3sinθ – 4sin3θ = 1.
 
Sol :






We know that,

$\cos \theta=\frac{\text { Base }}{\text { hypotenuse }}$
$\cos \theta=\frac{\sqrt{3}}{2} \Rightarrow \frac{\mathrm{B}}{\mathrm{H}}=\frac{\sqrt{3}}{2}$
Let AB =k√3 and BC = 2k
In right angled ∆ABC, we have
B2 + P2 = H2
 (k√3)2 + P2 = (2k)2
 P2 + 3k2 = 4k2
 P2 = 4k2 – 3k2
 P2 = k2
 P =k2
 P = ±k
 P = k [taking positive square root since, side cannot be negative]
Now,
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$\therefore \sin \theta=\frac{P}{H}=\frac{k}{2 k}=\frac{1}{2}$

Now, LHS = 3sin θ – 4sin3 θ

$=3\left(\frac{1}{2}\right)-4\left(\frac{1}{2}\right)^{3}$

$\Rightarrow \frac{3}{2}-\frac{4}{8}$

$\Rightarrow \frac{3}{2}-\frac{1}{2}$

$\Rightarrow \frac{3-1}{2}$

$\Rightarrow \frac{2}{2}$

 1 = RHS
Hence Proved

Question 43 C

If $\sec \theta=\frac{5}{4}$, prove that : 
$\frac{\tan \theta}{1+\tan ^{2} \theta}=\frac{\sin \theta}{\sec \theta}$
 
Sol :
Given: $\sec \theta=\frac{5}{4}$





We know that,

$\sec \theta=\frac{\text { hypotenuse }}{\text { base }}$
$\operatorname{Sec} \theta=\frac{5}{4} \Rightarrow \frac{\mathrm{H}}{\mathrm{B}}=\frac{5}{4} \Rightarrow \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{5}{4}$
Let,
BC = 4k and AC = 5k
where, k is any positive integer.
In right angled ∆ABC, we have
(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]
 (AB)2 + (4k)2 = (5k )2
 (AB)2 + 16k2 = 25k2
 (AB)2 = 25k2 – 16k2
 (AB)2 = 9k2
 AB = 9k2
 AB =±3k [taking positive square root since, side cannot be negative]
Now, we have to find the value of other trigonometric ratios.
We, know that

$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$

$=\frac{A B}{A C}=\frac{3 k}{5 k}=\frac{3}{5}$

$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$

$=\frac{B C}{A C}=\frac{4 k}{5 k}=\frac{4}{5}$

$\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}$

$=\frac{A B}{B C}=\frac{3 k}{4 k}=\frac{3}{4}$

Now, LHS $=\frac{\tan \theta}{1+\tan ^{2} \theta}$

$=\frac{\left(\frac{3}{4}\right)}{1+\left(\frac{3}{4}\right)^{2}}$

$=\frac{\left(\frac{3}{4}\right)}{1+\left(\frac{9}{16}\right)}$

$=\frac{\left(\frac{3}{4}\right)}{\left(\frac{16+9}{16}\right)}$

$=\frac{\left(\frac{3}{4}\right)}{\left(\frac{25}{16}\right)}$

$=\frac{3}{4} \times \frac{16}{25}$

$=\frac{12}{25}$

Now, RHS $=\frac{\sin \theta}{\sec \theta}$

$=\frac{\left(\frac{3}{5}\right)}{\left(\frac{5}{4}\right)}$

$=\frac{3}{5} \times \frac{4}{5}$

$=\frac{12}{25}$

 LHS = RHS
Hence Proved

Question 43 D

$\cot B=\frac{12}{5}$
, prove that : tan2B – sin2 B=sin4 B sec2 B.
 
Sol :





We know that,
$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$
Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$
$\cot B=\frac{12}{5} \Rightarrow \frac{B}{P}=\frac{12}{5} \Rightarrow \frac{A B}{B C}=\frac{12}{5}$
Let,
Side adjacent to angle B =AB = 12k
Side opposite to angle B =BC = 5k
where, k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
 (AB)2 + (BC)2 = (AC)2
 (12k)2 + (5k)2 = (AC)2
 (AC)2 = 144 k2 +25 k2
 (AC)2 = 169 k2
 AC =169 k2
 AC =±13k
But side AC can’t be negative. So, AC = 13k

Now, we will find the sin θ
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to angle B = BC = 5k
and Hypotenuse = AC = 13k
So, $\sin \mathrm{B}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{5 \mathrm{k}}{13 \mathrm{k}}=\frac{5}{13}$
Now, we know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle B = AB =12k
Hypotenuse = AC =13k
So, $\cos \mathrm{B}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{12 \mathrm{k}}{13 \mathrm{k}}=\frac{12}{13}$
$\tan \mathrm{B}=\frac{\mathrm{P}}{\mathrm{B}}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{5}{12}$
$\sec \mathrm{B}=\frac{1}{\cos \mathrm{B}}=\frac{1}{\frac{12}{13}}=\frac{13}{12}$

Now, LHS = tan2B – sin2 B

$=\left(\frac{5}{12}\right)^{2}-\left(\frac{5}{13}\right)^{2}$

$=\frac{25}{144}-\frac{25}{169}$

$=\frac{4225-3600}{144 \times 169}$

$=\frac{625}{144 \times 169}$

$=\frac{625}{24336}$


Now, RHS = sin4 B sec2 B

$=\left(\frac{5}{13}\right)^{4}\left(\frac{13}{12}\right)^{2}$

$=\left(\frac{5}{13}\right)^{2}\left(\frac{5}{13}\right)^{2}\left(\frac{13}{12}\right)^{2}$

$=\frac{625}{144 \times 169}$

$=\frac{625}{24336}$

Now, LHS = RHS
Hence Proved


Question 44 

If $\cos \theta=\frac{\mathrm{q}}{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}}}$, prove that 
$\left(\frac{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}}}{\mathrm{p}}+\frac{\mathrm{q}}{\mathrm{p}}\right)^{2}= \frac{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}}+\mathrm{q}}{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}-\mathrm{q}}}$
 
Sol :
Given: $\cos \theta=\frac{q}{\sqrt{p^{2}+q^{2}}}$
Now, squaring both the sides, we get

$=\cos ^{2} \theta=\frac{\mathrm{q}^{2}}{\mathrm{p}^{2}+\mathrm{q}^{2}}$

$\Rightarrow \mathrm{p}^{2}+\mathrm{q}^{2}=\frac{\mathrm{q}^{2}}{\cos ^{2} \theta}$

$\Rightarrow \mathrm{p}^{2}=\frac{\mathrm{q}^{2}}{\cos ^{2} \theta}-\mathrm{q}^{2}$

$\Rightarrow \mathrm{p}^{2}=\frac{\mathrm{q}^{2}-\mathrm{q}^{2} \cos ^{2} \theta}{\cos ^{2} \theta}$

$\Rightarrow \mathrm{p}^{2}=\frac{\mathrm{q}^{2}\left(1-\cos ^{2} \theta\right)}{\cos ^{2} \theta}$

$\Rightarrow \mathrm{p}^{2}=\frac{\mathrm{q}^{2} \sin ^{2} \theta}{\cos ^{2} \theta}$

⇒ p2 = q2 tan2θ …(1)

Now, solving LHS $=\left(\frac{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}}}{\mathrm{p}}+\frac{\mathrm{q}}{\mathrm{p}}\right)^{2}$
Putting the value of p2 in the above equation, we get

$=\left(\frac{\sqrt{q^{2} \tan ^{2} \theta+q^{2}}}{p}+\frac{q}{p}\right)^{2}$

$\Rightarrow\left(\frac{\sqrt{q^{2}\left(\tan ^{2} \theta+1\right)}}{p}+\frac{q}{p}\right)^{2}$

$\Rightarrow\left(\frac{\sqrt{\mathrm{q}^{2} \sec ^{2} \theta}}{\mathrm{p}}+\frac{\mathrm{q}}{\mathrm{p}}\right)^{2}$ [∵ 1+ tan2 θ = sec2 θ]

$\Rightarrow\left(\frac{\mathrm{q} \sec \theta}{\mathrm{p}}+\frac{\mathrm{q}}{\mathrm{p}}\right)^{2}$

$\Rightarrow \frac{\mathrm{q}^{2}(\sec \theta+1)^{2}}{\mathrm{p}^{2}}$

$\Rightarrow \frac{\mathrm{q}^{2}(\sec \theta+1)^{2}}{\mathrm{q}^{2} \tan ^{2} \theta}$ (from Eq. (1))

$\Rightarrow \frac{(\sec \theta+1)^{2}}{\left(\sec ^{2} \theta-1\right)}$

$\Rightarrow \frac{(\sec \theta+1)(\sec \theta+1)}{(\sec \theta-1)(\sec \theta+1)}$ [(a + b) (a – b) = (a2 – b2)]

$\Rightarrow \frac{\sec \theta+1}{\sec \theta-1}$


Now, we solve the RHS

$=\frac{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}}+\mathrm{q}}{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}}-\mathrm{q}}$

$=\frac{\sqrt{\mathrm{q}^{2} \tan ^{2} \theta+\mathrm{q}^{2}}+\mathrm{q}}{\sqrt{\mathrm{q}^{2} \tan ^{2} \theta+\mathrm{q}^{2}}-\mathrm{q}}$

$=\frac{\sqrt{\mathrm{q}^{2}\left(\tan ^{2} \theta+1\right)}+\mathrm{q}}{\sqrt{\mathrm{q}^{2}\left(\tan ^{2} \theta+1\right)}-\mathrm{q}}$

$=\frac{\sqrt{\mathrm{q}^{2} \sec ^{2}}+\mathrm{q}}{\sqrt{\mathrm{q}^{2} \sec ^{2} \theta}-\mathrm{q}}$ [∵ 1+ tan2 θ = sec2 θ]

$=\frac{\operatorname{qsec} \theta+q}{\operatorname{qsec} \theta-q}$

$\Rightarrow \frac{\sec \theta+1}{\sec \theta-1}$

 LHS = RHS
Hence Proved

Question 45 

In the given figure, BC = 15 cm and sin B = 4/5, show that 
$\tan ^{2} \mathrm{B}-\frac{1}{\cos ^{2} \mathrm{B}}=-1$






Sol :
Given: BC =15cm and $\sin B=\frac{4}{5}$
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$\sin \mathrm{B}=\frac{4}{5} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{4}{5} \Rightarrow \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{4}{5}$
Let,
Side opposite to angle B = 4k
and Hypotenuse = 5k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
 (AC)2 + (BC)2 = (AB)2
 (4k)2 + (BC)2 = (5)2
 16k2 + (BC)2 = 25k2
 (BC)2 = 25 k2 –16 k2
 (BC)2 = 9 k2
 BC =9 k2
 BC =±3k
But side BC can’t be negative. So, BC = 3k
Now, we have to find the value of cos B and tan B

We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to angle B = BC =3k
Hypotenuse = AB =5k
So, $\cos B=\frac{3 k}{5 k}=\frac{3}{5}$
Now, tan B
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
side opposite to angle B = AC =4k
Side adjacent to angle B = BC =3k
So, $\tan \mathrm{B}=\frac{4 \mathrm{k}}{3 \mathrm{k}}=\frac{4}{3}$

Now, $\tan ^{2} \mathrm{B}-\frac{1}{\cos ^{2} \mathrm{B}}$

$=\left(\frac{4}{3}\right)^{2}-\left(\frac{1}{\frac{3}{5}}\right)^{2}$

$=\frac{16}{9}-\frac{25}{9}$

$=\frac{-9}{9}$

= –1 = RHS
Hence Proved


Question 46 

In the given figure, find 3 tan θ – 2 sin α + 4 cos α.






Sol :
First of all, we find the value of RS
In right angled ∆RQS, we have
(RQ)2 + (QS)2 = (RS)2
 (8)2 + (6)2 = (RS)2
 64 + 36 = (RS)2
 RS =100
 RS =±10 [taking positive square root, since side cannot be negative]
 RS =10

$\therefore \sin \alpha=\frac{P}{H}=\frac{8}{10}=\frac{4}{5}$

$\cos \alpha=\frac{B}{H}=\frac{6}{10}=\frac{3}{5}$

Now, we find the value of QP
In right angled ∆RQP
(RQ)2 + (QP)2 = (RP)2
 (8)2 + (QP)2 = (17)2
 64 + (QP)2 = 289
 (QP)2 =289–64
 (QP)2 =225
 QP =225
 QP =±15 [taking positive square root, since side cannot be negative]
 QP =15
tan θ$=\frac{\mathrm{P}}{\mathrm{B}}=\frac{8}{15}$

Now, 3 tan θ – 2 sinα + 4cos α
 $3\left(\frac{8}{15}\right)-2\left(\frac{4}{5}\right)+4\left(\frac{3}{5}\right)$
 $\frac{24}{15}-\frac{8}{5}+\frac{12}{5}$
 $\frac{24-24+36}{15}$

$\frac{36}{15}$

$\frac{12}{5}$


Question 47 

In the given figure ΔABC is right angled at B and BD is perpendicular to AC. Find (i) cos θ, (ii) cot α.






Sol :
Firstly, we find the value of AC
In right angled ∆ABC
(AB)2 + (BC)2 = (AC)2
 (12)2 + (5)2 = (AC)2
 144+25 =(AC)2
 (AC)2 =169
 AC =√169
 AC =±13
 AC =13 [taking positive square root since, side cannot be negative]
(i) $\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{12}{13}$
(ii) $\cot \alpha=\frac{\text { Base }}{\text { Perpendicular }}=\frac{12}{5}$
 

Question  48 

If 5 sin2 θ + cos2 θ = 2, find the value of sin θ.
 
Sol :
Given: 5 sin2 θ + cos2 θ = 2
 5 sin2 θ + (1– sin2 θ) = 2 [ sin2 θ + cos2 θ = 1]
 5 sin2 θ + 1 – sin2 θ = 2
 4 sin2 θ = 2 – 1
 4 sin2 θ = 1

$\Rightarrow \quad \sin ^{2} \theta=\frac{1}{4}$

$\Rightarrow \quad \sin \theta=\sqrt{\frac{1}{4}}$

$\Rightarrow \quad \sin \theta=\pm \frac{1}{2}$


Question 49 

If 7 sin2 θ + 3 cos2 θ =4, find the value of tan θ.
 
Sol :
Given : 7 sin2 θ + 3 cos2 θ =4
 7 sin2 θ + 3(1– sin2 θ) = 4 [ sin2 θ + cos2 θ = 1]
 7 sin2 θ + 3 –3 sin2 θ = 4
 4 sin2 θ = 4 – 3
 4 sin2 θ = 1

$\Rightarrow \sin ^{2} \theta=\frac{1}{4}$

$\Rightarrow \sin \theta=\sqrt{\frac{1}{4}}$

$\Rightarrow \sin \theta=\pm \frac{1}{2}$

Put the value of $\sin ^{2} \theta=\frac{1}{4}$ in given equation, we get

$\Rightarrow 7\left(\frac{1}{2}\right)^{2}+3 \cos ^{2} \theta=4$

$\Rightarrow \frac{7}{4}+3 \cos ^{2} \theta=4$

$\Rightarrow 3 \cos ^{2} \theta=4-\frac{7}{4}$

$\Rightarrow 3 \cos ^{2} \theta=\frac{16-7}{4}$

$\Rightarrow 3 \cos ^{2} \theta=\frac{9}{4}$

$\Rightarrow \cos ^{2} \theta=\frac{3}{4}$

$\Rightarrow \cos \theta=\sqrt{\frac{3}{4}}$

$\Rightarrow \cos \theta=\pm \frac{\sqrt{3}}{2}$

Now, we know that tan θ $=\frac{\sin \theta}{\cos \theta}$

$\Rightarrow \tan \theta=\frac{\left(\pm \frac{1}{2}\right)}{\left(\pm \frac{\sqrt{3}}{2}\right)}$

$\Rightarrow \tan \theta=\pm \frac{1}{\sqrt{3}}$


Question 50 

If 4 cos θ + 3 sin θ = 5, find the value of tan θ.
 
Sol :
Given : 4 cos θ+ 3 sin θ = 5
Squaring both the sides, we get
 (4 cos θ+ 3 sin θ)2 = 25
 16 cos2 θ + 9 sin2 θ + 2(4cos θ)(3sin θ)= 25 [ (a + b)2 =a2 +b2 +2ab]
 16 cos2 θ + 9 sin2 θ + 24 cosθ sinθ = 25

Divide by cos2 θ, we get
$\Rightarrow \frac{16 \cos ^{2} \theta}{\cos ^{2} \theta}+\frac{9 \sin ^{2} \theta}{\cos ^{2} \theta}+\frac{24 \cos \theta \sin \theta}{\cos ^{2} \theta}=\frac{25}{\cos ^{2} \theta}$
 16 + 9tan2 θ + 24 tanθ = 25sec2 θ
 16 + 9tan2 θ + 24 tanθ = 25(1 + tan2 θ) [ 1+ tan2θ = sec2 θ]
 16 + 9tan2 θ + 24 tanθ = 25+ 25 tan2 θ
 16tan2 θ – 24tanθ + 9 = 0
 16tan2 θ – 12 tanθ – 12 tanθ +9 = 0
 4tanθ (4tan θ  3)  3(4tan θ  3) = 0
 (4tan θ  3)2 = 0
$\Rightarrow \tan \theta=\frac{3}{4}$
 

Question 51 

If 7 sin A + 24 cos A = 25, find the value of tan A.
 
Sol :
Given : 7 sin A + 24 cos A = 25
Squaring both the sides, we get
 (7 sin A + 24 cos A)2 = 625
 49 sin2 A +576 cos2 A + 2(7sin A) (24cos A) = 625 [ (a + b)2 =a2 +b2 +2ab]
 49 sin2 A +576 cos2 A + 336 cosA sinA = 625

Divide by cos2 θ, we get
$\Rightarrow \frac{49 \sin ^{2} \mathrm{A}}{\cos ^{2} \mathrm{A}}+\frac{576 \cos ^{2} \mathrm{A}}{\cos ^{2} \mathrm{A}}+\frac{336 \cos \mathrm{A} \sin \mathrm{A}}{\cos ^{2} \mathrm{A}}=\frac{625}{\cos ^{2} \mathrm{A}}$

 49tan2 A +576+ 336 tanA = 625sec2 A
 49tan2 A +576+ 336 tanA = 625(1 + tan2 A) [ 1+ tan2θ = sec2 θ]
 49tan2 A +576+ 336 tanθA = 625+625 tan2 A
 576tan2 A – 336tanA + 49 = 0
 576tan2 A – 168 tanA – 168 tanA +49 = 0
 24tanθ (24tan A  7)  7(24tan A  7) = 0
 (24tan A – 7)2 = 0
$\Rightarrow \tan \mathrm{A}=\frac{7}{24}$

Question 52 

If 9 sin θ + 40 cos θ= 41, find the value of cos θ and cosec θ
 
Sol :
Given: 9 sin θ + 40 cos θ= 41
 9sinθ = 41 – 40 cosθ (i)
Squaring both sides, we get
 81sin2 θ = 1681+1600 cos2 θ – 2(41) (40cos θ) [ (a – b)2 =a2 +b2 –2ab]
 81 (1– cos2 θ) =1681+1600 cos2 θ – 3280cosθ
 81  81cos2 θ = 1681 +1600cos2 θ – 3280 cosθ
 1681cos2 θ –3280cos θ +1600 = 0
 (41)2 cos2 θ – 2(41) (40cos θ) + (40)2 = 0
 (41cos θ  40 )2 = 0
$\Rightarrow \cos \theta=\frac{40}{41}$

Now, putting the value of cos θ in Eq. (i), we get

$\Rightarrow 9 \sin \theta=41-40\left(\frac{40}{41}\right)$

$\Rightarrow 9 \sin \theta=\left(\frac{1681-1600}{41}\right)$

$\Rightarrow \sin \theta=\left(\frac{81}{41 \times 9}\right)$

$\Rightarrow \frac{1}{\operatorname{cosec} \theta}=\left(\frac{9}{41}\right)$

$\Rightarrow \operatorname{cosec} \theta=\frac{41}{9}$


Question 53 

If tan A + sec A = 3, find the value of sin A.
 
Sol :
tan A + sec A = 3
 tanA = 3  secA
Squaring both the sides, we get
 tan2 A =(3 – secA)2
 tan2 A = 9 + sec2A – 6sec A
 sec2 A – 1 = 9 + sec2A – 6sec A [ 1+ tan2 A = sec2 A]
 –1 – 9 = –6secA
 – 10 = –6sec A
$\Rightarrow \sec A=\frac{10}{6}$
$\Rightarrow \frac{1}{\cos A}=\frac{5}{3}\left[\because \sec A=\frac{1}{\cos A}\right]$
$\Rightarrow \cos A=\frac{3}{5}$


Now, tan A + sec A = 3
$\Rightarrow \frac{\sin A}{\cos A}+\frac{1}{\cos A}=3\left[\because \tan A=\frac{\sin A}{\cos A}\right]$
$\Rightarrow \frac{\sin A}{\cos A}=\frac{3 \cos A-1}{\cos A}$
 sin A = 3cosA  1

$\Rightarrow \sin A=3\left(\frac{3}{5}\right)-1$

$\Rightarrow \sin A=\left(\frac{9-5}{5}\right)$

$\Rightarrow \sin A=\left(\frac{4}{5}\right)$


Question 54 

If cosec A + cot A = 5, find the value of cos A.
 
Sol :
cosec A + cot A = 5
 cotA = 5  cosecA
Squaring both the sides, we get
 cot2 A =(5 – cosecA)2
 cot2 A = 25 + cosec2A – 10cosec A
 cosec2 A – 1 = 25 + cosec2A – 10cosec A [ 1+ cot2 A = cosec2 A]
 –1 – 25 = –10cosecA
 – 26 = –10cosec A
$\Rightarrow \operatorname{cosec} A=\frac{26}{10}$
$\Rightarrow \frac{1}{\sin A}=\frac{13}{5}\left[\because \operatorname{cosec} A=\frac{1}{\sin A}\right]$
$\Rightarrow \sin \mathrm{A}=\frac{5}{13}$

Now, cosec A + cot A = 5
$\Rightarrow \frac{1}{\sin A}+\frac{\cos A}{\sin A}=5\left[\because \cot A=\frac{\cos A}{\sin A}\right]$
$\Rightarrow \frac{13}{5}+\frac{\cos A}{\frac{5}{13}}=5$

$\Rightarrow \frac{13}{5}+\frac{13 \cos A}{5}=5$

$\Rightarrow \frac{13 \cos A}{5}=5-\frac{13}{5}$

$\Rightarrow \frac{13 \cos A}{5}=\frac{25-13}{5}$

$\Rightarrow \cos A=\frac{12}{13}$


Question 55 

If tan θ + sec θ = x, show that 

$\sin \theta=\frac{x^{2}-1}{x^{2}+1}$

Sol :
tan θ+ sec θ = x
 tan θ = x  sec θ
Squaring both sides, we get
 tan2 θ =(x – secθ)2
 tan2 θ = x2 + sec2θ – 2xsec θ
 sec2 θ – 1 = x2 + sec2θ – 2xsec θ [ 1+ tan2 A = sec2 A]
 –1 – x2 = –2xsecθ
$\Rightarrow \sec \theta=\frac{1+x^{2}}{2 x}$
Now,
tan θ = x – sec θ
$\Rightarrow \frac{\sin \theta}{\cos \theta}=x-\sec \theta$
$\Rightarrow \sin \theta\left(\frac{1+x^{2}}{2 x}\right)=x-\left(\frac{1+x^{2}}{2 x}\right)$
$\Rightarrow \sin \theta\left(\frac{1+\mathrm{x}^{2}}{2 \mathrm{x}}\right)=\left(\frac{2 \mathrm{x}^{2}-1+\mathrm{x}^{2}}{2 \mathrm{x}}\right)$
$\Rightarrow \sin \theta\left(\frac{1+x^{2}}{2 x}\right)=\left(\frac{x^{2}-1}{2 x}\right)$
$\Rightarrow \sin \theta=\frac{x^{2}-1}{x^{2}+1}$ = RHS
Hence Proved

Question 56 

If cos θ +sin θ=1, prove that cos θ – sin θ = ± 1
 
Sol :
Using the formula,
(a+b)2 + (a – b)2 = 2(a2+b2)
⇒ (cos θ +sin θ)2 + (cos θ – sin θ)2 = 2(cos2θ + sin2 θ)
⇒ 1 + (cos θ – sin θ)2 = 2(1)
⇒ (cos θ – sin θ)2 = 2 –1
⇒ (cos θ – sin θ)2 = 1
⇒ (cos θ – sin θ) =√1
⇒ (cos θ – sin θ) = ±1

 

S.no Chapters Links
1 Real numbers Exercise 1.1
Exercise 1.2
Exercise 1.3
Exercise 1.4
2 Polynomials Exercise 2.1
Exercise 2.2
Exercise 2.3
3 Pairs of Linear Equations in Two Variables Exercise 3.1
Exercise 3.2
Exercise 3.3
Exercise 3.4
Exercise 3.5
4 Trigonometric Ratios and Identities Exercise 4.1
Exercise 4.2
Exercise 4.3
Exercise 4.4
5 Triangles Exercise 5.1
Exercise 5.2
Exercise 5.3
Exercise 5.4
Exercise 5.5
6 Statistics Exercise 6.1
Exercise 6.2
Exercise 6.3
Exercise 6.4
7 Quadratic Equations Exercise 7.1
Exercise 7.2
Exercise 7.3
Exercise 7.4
Exercise 7.5
8 Arithmetic Progressions (AP) Exercise 8.1
Exercise 8.2
Exercise 8.3
Exercise 8.4
9 Some Applications of Trigonometry: Height and Distances Exercise 9.1
10 Coordinates Geometry Exercise 10.1
Exercise 10.2
Exercise 10.3
Exercise 10.4
11 Circles Exercise 11.1
Exercise 11.2
12 Constructions Exercise 12.1
13 Area related to Circles Exercise 13.1
14 Surface Area and Volumes Exercise 14.1
Exercise 14.2
Exercise 14.3
Exercise 14.4
15 Probability Exercise 15.1

1 comment:

Contact Form

Name

Email *

Message *