KC Sinha Mathematics Solution Class 10 Chapter 4 Trigonometric Ratios and Identities Exercise 4.3


Exercise 4.1
Exercise 4.2
Exercise 4.3
Exercise 4.4

Exercise 4.3


Question 1 

Express the following as trigonometric ratio of complementary angle of θ.
(i) cos θ (ii) sec θ
(iii) cot θ (iv) cosec θ
(v) tan θ
Sol :







(i) We know that
$\cos \theta=\frac{\text { base }}{\text { Hypotenuse }}=\frac{A B}{A C}=\sin \left(90^{\circ}-\theta\right)$
⇒ cosθ = sin (90° - θ)

(ii) We know that
$\sec \theta=\frac{\text { hypotenuse }}{\text { base }}=\frac{A C}{A B}=\operatorname{cosec}\left(90^{\circ}-\theta\right)$

(iii) We know that
$\cot \theta=\frac{\text { base }}{\text { perpendicular }}=\frac{A B}{B C}=\tan \left(90^{\circ}-\theta\right)$

(iv) We know that
$\operatorname{cosec} \theta=\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{A C}{B C}=\sec \left(90^{\circ}-\theta\right)$

(v) We know that
$\tan \theta=\frac{\text { perpendicular }}{\text { base }}=\frac{\mathrm{BC}}{\mathrm{AB}}=\cot \left(90^{\circ}-\theta\right)$

Question 2 

Express the following as trigonometric ratio of complementary angle of 90o- θ.
(i) tan (90o- θ)
(ii) cos (90o- θ)
Sol :
(i) We know that,
$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\Rightarrow \tan \left(90^{\circ}-\theta\right)=\frac{\sin \left(90^{\circ}-\theta\right)}{\cos \left(90^{\circ}-\theta\right)}$
$\Rightarrow \tan \left(90^{\circ}-\theta\right)=\frac{\sin 90^{\circ} \cos \theta-\cos 90^{\circ} \sin \theta}{\cos 90^{\circ} \cos \theta+\sin 90^{\circ} \sin \theta}$[∵ sin 90° = 1 and cos 90° = 0]
$\Rightarrow \tan \left(90^{\circ}-\theta\right)=\frac{\cos \theta}{\sin \theta}$
⇒ tan (90° - θ ) = cot θ

(ii) We know that.
Cos(A - B) = cos A cos B + sin A sin B
⇒ cos (90o- θ) = cos 90° cos θ + sin 90° sin θ
⇒ cos (90o- θ) = (0) cos θ + (1) sin θ
⇒ cos (90o- θ) = sin θ

Question 3 

Fill up the blanks by an angle between 0oand 90o:
(i) sin 70o = cos(…) (ii) sin 35o = cos(…)
(iii) cos 48o=sin (…) (iv) cos 70o = sin (…)
(v) cos 50o = sin (…) (vi) sec 32o=cosec(…)
Sol :
(i) We know that
Sin θ = cos (90° - θ)
Here, θ = 70°
⇒ sin 70° = cos(90° -70°)
⇒ sin 70° = cos 20°

(ii) We know that
Sin θ = cos (90° - θ)
Here, θ = 35°
⇒ sin 35° = cos(90° -35°)
⇒ sin 35° = cos 55°

(iii) cos θ = sin (90° - θ)
Here, θ = 48°
⇒ cos 48° = sin (90° - 48°)
⇒ cos 48° = sin 42°

(iv) cos θ = sin (90° - θ)
Here, θ = 70°
⇒ cos 70° = sin (90° - 70°)
⇒ cos 70° = sin 20°

(v) cos θ = sin (90° - θ)
Here, θ = 50°
⇒ cos 50° = sin (90° - 50°)
⇒ cos 50° = sin 40°

(vi) sec θ = cosec (90°-θ)
Here, θ = 32°
⇒ sec 32° = cosec(90° – 32°)
⇒ sec 32° = cosec 58°

Question 4 

If A+B=90o, then fill up the blanks with suitable trigonometric ratio of complementary angle of A or B.
(i) sin A =…. (ii) cos B =…
(iii) sec A =… (iv) tan B =…
(v) cosec B =… (vi) cot A=…
Sol :
(i) Here, A+B = 90°
⇒ A = 90° - B
Multiplying both sides by Sin, we get
Sin A = Sin (90° - B)
⇒ sin A = Cos B [∵ cos θ = sin (90° - θ)]
(ii) Here, A+B = 90°
⇒ B = 90° - A
Multiplying both sides by cos, we get
Cos B = cos (90° - A)
⇒ cos B = sin A [∵ Sin θ = cos (90° - θ)]
(iii) Here, A+B = 90°
⇒ A = 90° - B
Multiplying both sides by sec, we get
Sec A = Sec (90° - B)
⇒ sec A = Cosec B [∵ cosec θ = sec (90° - θ)]
(iv) Here, A+B = 90°
⇒ B = 90° - A
Multiplying both sides by tan, we get
tan B = tan (90° - A)
⇒ tan B = cot A [∵ cot θ = tan (90° - θ)]
(v) Here, A+B = 90°
⇒ B = 90° - A
Multiplying both sides by cosec, we get
Cosec B = cosec (90° - A)
⇒ cosec B = sec A [∵ sec θ = cosec (90° - θ)]
(vi) Here, A+B = 90°
⇒ A = 90° - B
Multiplying both sides by Sin, we get
cotA = cot (90° - B)
⇒ cot A = tan B [∵ tan θ = cot (90° - θ)]

Question 5 A 

If sin 37o=a, then express cos 53o in terms of a.
Sol :
Given sin 37° = a
We know that sin θ = cos (90° - θ)
Here, θ = 37°
⇒ cos (90° - 37°) = a
⇒ cos 53° = a

Question 5 B 

If cos 47o=a, then express sin 43o in terms of a.
Sol :
Given cos 47° = a
We know that cos θ = sin (90° - θ)
Here, θ = 47°
⇒ sin (90° - 47°) = a
⇒ sin 43° = a

Question 5 C 

If sin 52o=a, then express sin 38o in terms of a.
Sol :
Given sin 52° = a
We know that sin θ = cos (90° - θ)
Here, θ = 52°
⇒ cos (90° - 52°) = a
⇒ cos 38° = a

Question 5 D 

If sin 56o=x, then express sin 34o in terms of x.
Sol :
Given sin 56° = x
We know that sin θ = cos (90° - θ)
Here, θ = 56°
⇒ cos (90° - 56°) = x
⇒ cos 34° = x

Question 6 

Find the value of
(i) $\frac{\cos 59^{\circ}}{\sin 31^{\circ}}$ 
(ii) $\frac{\cos 53^{\circ}}{\sin 37^{\circ}}$
(iii) $\frac{\sin 20^{\circ}}{\cos 70^{\circ}}$ 
(iv) $\frac{\sqrt{2} \sin 22^{\circ}}{\cos 68^{\circ}}$
(v)$\frac{\sin 10^{\circ}}{\cos 80^{\circ}}$ 
(vi) $\frac{\sin 27^{\circ}}{\cos 63^{\circ}}$
(vii) $\frac{\sqrt{3} \cos 65^{\circ}}{\sin 25^{\circ}}$
(viii) $\frac{\cos 29^{\circ}}{\sin 61^{\circ}}$
(ix) sin 54° – cos 36° 
(x) $\frac{\tan 80^{\circ}}{\cot 10^{\circ}}$
(xi) cosec 31° – sec 59° 
(xii) $\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$
(xiii) $\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$
Sol :
(i)$\frac{\cos 59^{\circ}}{\sin 31^{\circ}}=\frac{\sin \left(90^{\circ}-59^{\circ}\right)}{\sin 31^{\circ}}$ 
$=\frac{\sin 31^{\circ}}{\sin 31^{\circ}}=1$ [∵ cos θ = sin (90° - θ)]

(ii) $\frac{\cos 53^{\circ}}{\sin 37^{\circ}}=\frac{\sin \left(90^{\circ}-53^{\circ}\right)}{\sin 37^{\circ}}$
$=\frac{\sin 37^{\circ}}{\sin 37^{\circ}}=1$ [∵ cos θ = sin (90° - θ)]

(iii) $\frac{\sin 20^{\circ}}{\cos 70^{\circ}}=\frac{\cos \left(90^{\circ}-20^{\circ}\right)}{\cos 70^{\circ}}$
$=\frac{\cos 70^{\circ}}{\cos 70^{\circ}}=1$ [∵ Sin θ = cos (90° - θ)]

(iv) $\frac{\sqrt{2} \sin 22^{\circ}}{\cos 68^{\circ}}=\frac{\sqrt{2} \cos \left(90^{\circ}-22^{\circ}\right)}{\cos 68^{\circ}}$
$=\frac{\sqrt{2} \cos 68^{\circ}}{\cos 68^{\circ}}=\sqrt{2}$ [∵ Sin θ = cos (90° - θ)]

(v) $\frac{\sin 10^{\circ}}{\cos 80^{\circ}}=\frac{\cos \left(90^{\circ}-10^{\circ}\right)}{\cos 80^{\circ}}$
$=\frac{\cos 80^{\circ}}{\cos 80^{\circ}}=1$ [∵ Sin θ = cos (90° - θ)]

(vi) $\frac{\sin 27^{\circ}}{\cos 63^{\circ}}=\frac{\cos \left(90^{\circ}-27^{\circ}\right)}{\cos 63^{\circ}}$
$=\frac{\cos 63^{\circ}}{\cos 63^{\circ}}=1$ [∵ Sin θ = cos (90° - θ)]

(vii) $\frac{\sqrt{3} \cos 65^{\circ}}{\sin 25^{\circ}}=\frac{\sqrt{3} \sin \left(90^{\circ}-65^{\circ}\right)}{\sin 25^{\circ}}$
$=\frac{\sin 25^{\circ}}{\sin 25^{\circ}}=\sqrt{3}$ [∵ cos θ = sin (90° - θ)]

(viii) $\frac{\cos 29^{\circ}}{\sin 61^{\circ}}=\frac{\sin \left(90^{\circ}-29^{\circ}\right)}{\sin 61^{\circ}}$
$=\frac{\sin 61^{\circ}}{\sin 61^{\circ}}=1$ [∵ cos θ = sin (90° - θ)]

(ix) sin 54° - sin(90° - 36°) [∵ cos θ = sin (90° - θ)]
⇒ sin 54° - sin 54°
⇒ 0

(x) $\frac{\tan 80^{\circ}}{\cot 10^{\circ}}=\frac{\cot \left(90^{\circ}-80^{\circ}\right)}{\cot 10^{\circ}}$
$=\frac{\cot 10^{\circ}}{\cot 10^{\circ}}=1$ [∵ tan θ = cot (90° - θ)]

(xi) cosec 31° - cosec(90° - 59°) [∵ sec θ = cosec (90° - θ)]
⇒ cosec 31° - cosec 31°
⇒ 0

(xii) $\frac{\sin 18^{\circ}}{\cos 72^{\circ}}=\frac{\cos \left(90^{\circ}-18^{\circ}\right)}{\cos 72^{\circ}}$
$=\frac{\cos 72^{\circ}}{\cos 72^{\circ}}=1$ [∵ Sin θ = cos (90° - θ)]

(xiii) $\frac{\tan 65^{\circ}}{\cot 25^{\circ}}=\frac{\cot \left(90^{\circ}-65^{\circ}\right)}{\cot 25^{\circ}}$
$=\frac{\cot 25^{\circ}}{\cot 25^{\circ}}=1$ [∵ tan θ = cot (90° - θ)]

Question 7 

Fill up the blanks :
(i) If sin 50o=0.7660, then cos 40o=……
(ii) If cos 44o = 0.7193, then sin 46o=…..
(iii) sin 50o+cos 40o = 2 sin (………)
(iv) Value of $\frac{\sin 70^{\circ}}{\cos 20^{\circ}}$ is ………
Sol :
(i) Given: sin 50o=0.7660
We know that
Sin θ = cos (90° - θ)
⇒ cos (90° - 50°) = 0.7660
⇒ cos 40° = 0.7660

(ii) Given: cos 44° = 0.7193
We know that,
cos θ = sin (90° - θ)
⇒ sin (90° - 44°) = 0.7193
⇒ sin 46° = 0.7193

(iii) LHS = sin 50° + cos 40°
⇒ sin 50° + sin (90° - 40°) [∵ cos θ = sin (90° - θ)]
⇒ sin 50° + sin 50°
⇒ 2sin 50°

(iii) $\frac{\sin 70^{\circ}}{\cos 20^{\circ}}=\frac{\cos \left(90^{\circ}-70^{\circ}\right)}{\cos 20^{\circ}}$
$=\frac{\cos 20^{\circ}}{\cos 20^{\circ}}=1$ [∵ Sin θ = cos (90° - θ)]

Question 8 A 

If A + B = 90o, then express cos B in terms of simplest trigonometric ratio of A.
Sol :
Given: A+B =90°
⇒ B = 90° - A
Multiplying both side by cos, we get
= cos B = Cos (90° - A)
⇒ cos B = sin A [∵ Sin θ = cos (90° - θ)]

Question 8 B 

If X + Y = 90o, then express cos X in terms of simplest trigonometric ratio of Y.
Sol :
Given: X+Y =90°
⇒ X= 90° - Y
Multiplying both side by cos, we get
= cos X = Cos (90° - Y)
⇒ cos X = sin Y [∵ Sin θ = cos (90° - θ)]

Question 9 A 

If A + B = 90o, sin A = a, sin B = b, then prove that
(a) a2 + b2 = 1
(b) $\tan A=\frac{a}{b}$
Sol :
(a) LHS = a2 +b2
= (sin A)2 + (sin B)2
= sin2 A + sin2 B
= sin2 A + sin2 (90° - A) [∵ cos θ = sin (90° - θ)]
= sin2 A + cos2 A
= 1 [∵ sin2 θ + cos2 θ = 1]
=RHS
Hence Proved

(b) LHS = tan A
Now, taking RHS $=\frac{a}{b}$
⇒ $\Rightarrow \frac{\sin A}{\sin B}$
$\Rightarrow \frac{\sin A}{\sin \left(90^{\circ}-A\right)}$ {given, A +B = 90°)
$\Rightarrow \frac{\sin A}{\cos A}$ [∵ cos θ = sin (90° - θ)]
⇒ tan A
=LHS
∴ LHS = RHS
Hence Proved

Question 9 B 

Show that sin(50° + θ) – cos (40° – θ) = 0.
Sol :
LHS = sin (50° + θ) – cos (40° - θ)
We know that,
Sin A = cos (90° - A)
Here, A = 50° + θ
⇒ cos {90° -( 50° + θ)} – cos (40° - θ)
⇒ cos (40° - θ) – cos (40° - θ)
= 0 = RHS
Hence Proved

Question 10 

Prove that $\frac{\cos \theta}{\sin \left(90^{\circ}-\theta\right)}+\frac{\sin \theta}{\cos \left(90^{\circ}-\theta\right)}=2$
Sol :
Taking LHS,
$\frac{\cos \theta}{\sin \left(90^{\circ}-\theta\right)}+\frac{\sin \theta}{\cos \left(90^{\circ}-\theta\right)}$ [∵ cos θ = sin (90° - θ) and Sin θ = cos (90° - θ)]
$\Rightarrow \frac{\cos \theta}{\cos \theta}+\frac{\sin \theta}{\sin \theta}$
⇒ 1+ 1
= 2 = RHS
Hence Proved

Question 11 A 

In a ∆ABC prove that
$\sin \frac{\mathrm{B}+\mathrm{C}}{2}=\cos \frac{\mathrm{A}}{2}$
Sol :







In ∆ABC,
Sum of angles of a triangle = 180°
A + B + C = 180°
⇒ B + C = 180° - A

Multiplying both sides by $\frac{1}{2}$
$=\frac{\mathrm{B}+\mathrm{C}}{2}=\frac{180^{\circ}-\mathrm{A}}{2}$
$=\frac{\mathrm{B}+\mathrm{C}}{2}=\frac{180^{\circ}}{2}-\frac{\mathrm{A}}{2}$
$=\frac{B+C}{2}=90^{\circ}-\frac{A}{2}$ …(1)

Taking LHS
$\sin \frac{\mathrm{B}+\mathrm{C}}{2}$
$=\sin \left(90^{\circ}-\frac{\mathrm{A}}{2}\right)$ (from eq (1))
$=\cos \frac{A}{2}$ [∵ sin (90° - θ) = cos θ]
=RHS
Hence Proved

Question 11 B 

In a ∆ABC prove that
$\tan \frac{\mathrm{B}+\mathrm{C}}{2}=\cot \frac{\mathrm{A}}{2}$
Sol :







In ∆ABC,
Sum of angles of a triangle = 180°
A + B + C = 180°
⇒ B + C = 180° - A

Multiplying both sides by $\frac{1}{2}$
$=\frac{\mathrm{B}+\mathrm{C}}{2}=\frac{180^{\circ}-\mathrm{A}}{2}$
$=\frac{\mathrm{B}+\mathrm{C}}{2}=\frac{180^{\circ}}{2}-\frac{\mathrm{A}}{2}$
$=\frac{B+C}{2}=90^{\circ}-\frac{A}{2}$ …(2)

Taking LHS
$\tan \frac{\mathrm{B}+\mathrm{C}}{2}$
$=\tan \left(90^{\circ}-\frac{\mathrm{A}}{2}\right)$ (from eq (2))
$=\cot \frac{A}{2}$ [∵ tan (90° - θ) = cot θ]
=RHS
Hence Proved

Question 11 C 

In a ∆ABC prove that
$\cos \frac{A+B}{2}=\sin \frac{C}{2}$
Sol :







In ∆ABC,
Sum of angles of a triangle = 180°
A + B + C = 180°
⇒ A + B = 180° - C

Multiplying both sides by $\frac{1}{2}$
$=\frac{A+B}{2}=\frac{180^{\circ}-C}{2}$
$=\frac{A+B}{2}=\frac{180^{\circ}}{2}-\frac{C}{2}$
$=\frac{A+B}{2}=90^{\circ}-\frac{C}{2}$ …(3)

Taking LHS
$\cos \frac{A+B}{2}$
$=\cos \left(90^{\circ}-\frac{\mathrm{C}}{2}\right)$ (from eq (3))
$=\sin \frac{C}{2}$ [∵ cos (90° - θ) = sin θ]
=RHS
Hence Proved

Question 12 A 

If sin 3A = cos(A – 26o), where 3A is an acute angle, find the value of A.
Sol :
sin 3A = cos (A-26°) …(i)
We know that
Sin θ = cos (90° - θ)
So, Eq. (i) become
Cos (90° - 3A) = cos (A -26°)
On Equating both the sides, we get
90° - 3A = A – 26°
⇒ -3A - A = -26° -90°
⇒ -4A = -116°
⇒ A = 29°

Question 12 B 

Find θ if cos(2 θ +54o)= sin θ, where (2θ +54o) is an acute angle.
Sol :
cos(2 θ +54o)= sin θ …(i)
We know that
Sin θ = cos (90° - θ)
So, Eq. (i) become
cos(2 θ +54o) = cos( 90° - θ)
On Equating both the sides, we get
2θ + 54° = 90° - θ
⇒ 2θ + θ = 90° - 54°
⇒ 3θ = 36°
⇒ θ = 12°

Question 12 C 

If tan 3 θ =cot (θ +18o), where 3 θ and θ +18o are acute angles, find the value of θ.
Sol :
tan 3θ = cot (θ + 18°) …(i)
We know that
tan θ = cot (90° - θ)
So, Eq. (i) become
Cot (90° - 3θ) = cot (θ + 18°)
On Equating both the sides, we get
90° - 3θ = θ + 18°
⇒ -3θ - θ = 18° -90°
⇒ -4θ = -72°
⇒ θ = 18°

Question 12 D 

If sec 5 θ =cosec (θ -36o), where 5 θ is an acute angle, find the value of θ.
Sol :
sec 5θ = cosec (θ-36°) …(i)
We know that
sec θ = cosec (90° - θ)
So, Eq. (i) become
Cosec (90° - 5θ) = cosec (θ -36°)
On Equating both the sides, we get
90° - 5θ = θ -36°
⇒ -5θ - θ = -36° -90°
⇒ -6θ = -126°
⇒ θ = 21°

Question 13 

Prove that :
sin 70o. sec 20o=1
Sol :
Taking LHS
sin 70° sec 20°
$\Rightarrow \sin 70^{\circ} \times \frac{1}{\cos 20^{\circ}}$
$\Rightarrow \sin 70^{\circ} \times \frac{1}{\sin \left(90^{\circ}-20^{\circ}\right)}$ [∵ cos θ = sin (90° - θ)]
$\Rightarrow \frac{\sin 70^{\circ}}{\sin 70^{\circ}}$
= 1 = RHS
Hence Proved

Question 14 

Prove that :
sin (90oθ) tan θ=sin θ
Sol :
Taking LHS
Sin(90° - θ) tanθ [∵ cos θ = sin (90° - θ)]
⇒ cos θ tan θ
$\Rightarrow \cos \theta \times \frac{\sin \theta}{\cos \theta}$ [∵ tan θ $=\frac{\sin \theta}{\cos \theta}$]
= sin θ = RHS
Hence Proved

Question 15 

Prove that :
tan 63o. tan 27o=1
Sol :
Taking LHS
Tan 63° tan 27°
⇒ tan 63° cot (90° - 27°) [∵ tan θ = cot (90° - θ)]
⇒ tan 63° cot 63°
$\Rightarrow \tan 63^{\circ} \times \frac{1}{\tan 63^{\circ}}$ $\left[\because \tan \theta=\frac{1}{\cot \theta}\right]$
= 1 =RHS
Hence Proved

Question 16

Prove that :
$\frac{\sin \left(90^{\circ}-\theta\right) \sin \theta}{\tan \theta}-1=-\sin ^{2} \theta$
Sol :
Taking LHS
$=\frac{\sin \left(90^{\circ}-\theta\right) \sin \theta}{\tan \theta}-1$
$=\frac{\cos \theta \sin \theta}{\frac{\sin \theta}{\cos \theta}}-1$
$=\frac{\cos \theta \sin \theta \times \cos \theta}{\sin \theta}-1$
= cos2 θ – 1
= - sin2 θ [∵ cos2 θ + sin2 θ = 1]
= RHS
Hence Proved

Question 17 

Prove that :
sin 55o. cos 48o=cos35o. sin 42o
Sol :
Taking LHS = sin 55 ° cos 48°
We know that
cos θ = sin (90° - θ)
Here, θ = 48°
⇒ sin 55° sin (90° - 48°)
⇒ sin 55° sin 42°
We also know that
Sin θ = cos (90° - θ)
Here, θ = 55°
⇒ cos (90° - 55°) sin 42°
⇒ cos 35° sin 42° = RHS
Hence Proved

Question 18 

Prove that :
sin2 25o+sin2 65° = cos2 63°+cos2 39o
Sol :
Taking LHS = sin 25o+sin65o
We know that
Sin θ = cos (90° - θ)
Here, θ = 25°
⇒ cos2 (90° - 25°)+ sin2 65°
⇒ cos2 65° + sin2 65°
= 1 [∵ cos2 θ + sin2 θ = 1]
Now, RHS = cos2 63o+cos2 39o
We know that
cos θ = sin (90° - θ)
Here, θ = 39°
⇒ cos2 63° + sin2 (90° - 39°)
⇒ cos2 63°+ sin2 63°
=1 [∵ cos2 θ + sin2 θ = 1]
LHS = RHS
Hence Proved

Question 19 

Prove that :
sin 54o+cos67o= sin23o+cos36o
Sol :
Taking LHS = sin 54o+cos67o
We know that
cos θ = sin (90° - θ)
Here, θ = 67°
⇒ sin 54°+ sin (90° - 67°)
⇒ sin 54°+ sin 23°
We also know that
Sin θ = cos (90° - θ)
Here, θ = 54°
⇒ cos (90° - 54°)+ sin 23°
⇒ cos 36°+ sin 23° = RHS
Hence Proved

Question 20 

Prove that :
cos 27+ sin51o = sin63o+cos 39o
Sol :
Taking LHS = cos 27+ sin51o
We know that
cos θ = sin (90° - θ)
Here, θ = 27°
⇒ sin (90° - 27°)+ sin 51°
⇒ sin 63°+ sin 51°
We also know that
Sin θ = cos (90° - θ)
Here, θ = 51°
⇒ sin 63°+ cos (90° - 51°)
⇒ sin 63°+ cos 39° = RHS
Hence Proved

Question 21 

Prove that :
sin240o+sin250o=1
Sol :
Taking LHS= sin240o+sin250o
⇒ cos2 (90° - 40°) + sin2 50° [∵ Sin θ = cos (90° - θ)]
⇒ cos2 50° + sin2 50°
= 1 =RHS [∵ cos2 θ + sin2 θ = 1]
Hence Proved

Question 22 

Prove that :
sin229o + sin261o=1
Sol :
Taking LHS= sin229o + sin261o
⇒ cos2 (90° - 29°) + sin2 61° [∵ Sin θ = cos (90° - θ)]
⇒ cos2 61° + sin2 61°
= 1 =RHS [∵ cos2 θ + sin2 θ = 1]
Hence Proved

Question 23 

Prove that :
sin θ .cos (90° - θ) + cos θ sin (90° - θ).
Sol :
Taking LHS = sin θ cos (90° - θ) + cos θ sin (90° - θ)
⇒ sin θ × sin θ + cos θ × cos θ [∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]
⇒ cos2 θ + sin2 θ [∵ cos2 θ + sin2 θ = 1]
= 1 = RHS
Hence Proved

Question 24 

Prove that :
cos θ . cos(90° – θ) + sin θ sin (90° – θ) = 0
Sol :
Taking LHS = cos θ cos ( 90° - θ) + sin θ sin (90° - θ)
⇒ cos θ × sin θ – sinθ × cos θ [∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]
= 0 = RHS
Hence Proved

Question 25 

Prove that :
sin 42°. cos 48° + cos 42° . sin 48° = 1
Sol :
Taking LHS
= sin 42° cos 48° + cos 42° sin 48°
= cos (90° - 42°) cos 48° + sin (90° - 42°) sin 48°
[∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]
= cos 48° cos 48° + sin 48° sin 48°
= cos2 48° + sin2 48°
= 1 [∵ cos2 θ + sin2 θ = 1]
=LHS=RHS
Hence Proved

Question 26 

Prove that :
$\frac{\cos 20^{\circ}}{\sin 70^{\circ}}+\frac{\cos \theta}{\sin \left(90^{\circ}-\theta\right)}=2$
Sol :
Taking LHS
$=\frac{\cos 20^{\circ}}{\sin 70^{\circ}}+\frac{\cos \theta}{\sin \left(90^{\circ}-\theta\right)}$
$=\frac{\cos 20^{\circ}}{\cos \left(90^{\circ}-70^{\circ}\right)}+\frac{\cos \theta}{\cos \theta}$ [∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]
$=\frac{\cos 20^{\circ}}{\cos 20^{\circ}}+1$
= 1 + 1
= 2 = RHS
Hence Proved

Question 27 

Prove that :
tan 27° tan 45° tan 63°
Sol :
Taking LHS
= tan 27° tan 45° tan 63°
=tan (90° - 27°) tan 45° tan 63° [∵ tan θ = cot (90° - θ)]
=cot 63° tan 45° tan 63° $\left[\because \tan \theta=\frac{1}{\cot \theta}\right]$
$=\frac{1}{\tan 63^{\circ}} \times \tan 45^{\circ} \times \tan 63^{\circ}$
= tan 45° [∵ tan 45° =1]
=1 =RHS
Hence Proved

Question 28 

Prove that :
tan 9°. tan 27°. tan 45°. tan 63°. tan 81° = 1
Sol :
Taking LHS
= tan 9° tan 27° tan 45° tan 63° tan 81°
=cot(90° - 9°) tan (90° - 27°) tan 45° tan 63° tan 81° [∵ tan θ = cot (90° - θ)]
=cot 81° cot 63° tan 45° tan 63° tan 81° $\left[\because \tan \theta=\frac{1}{\cot \theta}\right]$
$=\frac{1}{\tan 81^{\circ}} \times \frac{1}{\tan 63^{\circ}} \times \tan 45^{\circ} \times \tan 63^{\circ} \times \tan 81^{\circ}$
= tan 45° [∵ tan 45° =1]
=1 =RHS
Hence Proved

Question 29 

Prove that :
sin 9°. sin 27°. sin 63°. sin 81°
= cos9°.cos27°.cos63°.cos81°
Sol :
Taking LHS
= sin 9° sin 27° sin 63° sin 81°
= cos (90° - 9°) cos (90° - 27°) cos (90° – 63°) cos (90°- 81°)
= cos 81° cos 63° cos 27° cos 9°
Or cos 9° cos 27° cos 63° cos 81° = RHS
Hence Proved

Question 30 A 

Prove that :
$\tan 7^{\circ} \cdot \tan 23^{\circ} \cdot \tan 60^{\circ} \cdot \tan 67^{\circ} \cdot \tan 83^{\circ}=\sqrt{3}$
Sol :
Taking LHS
= tan 7° tan 23° tan 60° tan 67° tan 83°
=cot(90° - 7°) tan (90° - 23°) tan 60° tan 67° tan 83° [∵ tan θ = cot (90° - θ)]
=cot 83° cot 67° tan 60° tan 67° tan 83° $\left[\because \tan \theta=\frac{1}{\cot \theta}\right]$
$=\frac{1}{\tan 83^{\circ}} \times \frac{1}{\tan 67^{\circ}} \times \tan 60^{\circ} \times \tan 67^{\circ} \times \tan 83^{\circ}$
= tan 60° [∵ tan 60° =√3]
=√3 =RHS

Question 30 B 

Prove that :
$\tan 15^{\circ} \tan 25^{\circ} \tan 60^{\circ} \tan 65^{\circ} \tan 75^{\circ}=\sqrt{3}$
Sol :
Taking LHS
= tan 15° tan 25° tan 60° tan 65° tan 75°
=cot(90° - 15°) tan (90° - 25°) tan 60° tan 65° tan 75° [∵ tan θ = cot (90° - θ)]
=cot 75° cot 65° tan 60° tan 65° tan 75° $\left[\because \tan \theta=\frac{1}{\cot \theta}\right]$
$=\frac{1}{\tan 75^{\circ}} \times \frac{1}{\tan 65^{\circ}} \times \tan 60^{\circ} \times \tan 65^{\circ} \times \tan 75^{\circ}$
= tan 60° [∵ tan 60° =√3]
=√3 =RHS

Question 31 

Find the value off the following:
$\frac{\sin 50^{\circ}}{\cos 40^{\circ}}+\frac{\cos \mathrm{ec} 40^{\circ}}{\sec 50^{\circ}}-4 \cos 50^{\circ} \cdot \cos \mathrm{ec} 40^{\circ}$
Sol :
$=\frac{\sin 50^{\circ}}{\cos 40^{\circ}}+\frac{\operatorname{cosec} 40^{\circ}}{\sec 50^{\circ}}-4 \cos 50^{\circ} \operatorname{cosec} 40^{\circ}$

$=\frac{\sin 50^{\circ}}{\sin \left(90^{\circ}-40^{\circ}\right)}+\frac{\operatorname{cosec} 40^{\circ}}{\operatorname{cosec}\left(90^{\circ}-50^{\circ}\right)}-4 \sin \left(90^{\circ}-50^{\circ}\right) \operatorname{cosec} 40^{\circ}$
[∵ cos θ = sin (90° - θ) and sec θ = cosec (90° - θ)]

$=\frac{\sin 50^{\circ}}{\sin 50^{\circ}}+\frac{\operatorname{cosec} 40^{\circ}}{\operatorname{cosec} 40^{\circ}}-4 \sin 40^{\circ} \times \frac{1}{\sin 40^{\circ}}$ $\left[\because \sin \theta=\frac{1}{\operatorname{cosec} \theta}\right]$

= 1 + 1 – 4
= -2

Question 32 

Find the value off the following:
$\frac{\cos ^{2} 20^{0}+\cos ^{2} 70^{\circ}}{\sin ^{2} 59^{\circ}+\sin ^{2} 31^{\circ}}+\sin 35^{\circ} \cdot \sec 55^{\circ}$
Sol :
$=\frac{\cos ^{2} 20^{\circ}+\cos ^{2} 70^{\circ}}{\sin ^{2} 59^{\circ}+\sin ^{2} 31^{\circ}}+\cos \left(90^{\circ}-35^{\circ}\right) \sec 55^{\circ}$

$=\frac{\cos ^{2} 20^{\circ}+\sin ^{2}\left(90^{\circ}-70^{\circ}\right)}{\sin ^{2}\left(59^{\circ}\right)+\cos ^{2}\left(90^{\circ}-31^{\circ}\right)}+\cos 55^{\circ} \sec 55^{\circ}$
[∵ cos θ = sin (90° - θ) and sec θ = cosec (90° - θ)]

$=\frac{\cos ^{2} 20^{\circ}+\sin ^{2} 20^{\circ}}{\sin ^{2}\left(59^{\circ}\right)+\cos ^{2} 59^{\circ}}+\cos 55^{\circ} \times \frac{1}{\cos 55^{\circ}}$
[∵ cos2 θ + sin2 θ = 1]

= 1 + 1
=2

Question 33 

Find the value off the following:
$\frac{\tan 50^{\circ}+\sec 50^{\circ}}{\cot 40^{\circ}+\cos \mathrm{ec} 40^{\circ}}+\cos 40^{\circ} \cdot \operatorname{cosec} 50^{\circ}$
Sol :
$=\frac{\tan 50^{\circ}+\sec 50^{\circ}}{\cot 40^{\circ}+\operatorname{cosec} 40^{\circ}}+\cos 40^{\circ} \operatorname{cosec} 50^{\circ}$

$=\frac{\cot \left(90^{\circ}-50^{\circ}\right)+\operatorname{cosec}\left(90^{\circ}-50^{\circ}\right)}{\cot 40^{\circ}+\operatorname{cosec} 40^{\circ}}+\sin \left(90^{\circ}-40^{\circ}\right) \operatorname{cosec} 50^{\circ}$
[∵ tan θ = cot (90° - θ) , sec θ = cosec (90° - θ) and cos θ = sin (90° - θ)]

$=\frac{\cot 40^{\circ}+\operatorname{cosec} 40^{\circ}}{\cot 40^{\circ}+\operatorname{cosec} 40^{\circ}}+\sin 50^{\circ} \operatorname{cosec} 50^{\circ}$

$=1+\sin 50^{\circ} \times \frac{1}{\sin 50^{\circ}}$ $\because \sin \theta=\frac{1}{\operatorname{cosec} \theta}$
= 1 + 1
= 2

Question 34 

Find the value off the following:
cosec (65° + θ) – sec (25° - θ) – tan(55° - θ) + cot(35° +θ)
Sol :
cosec (65° + θ) – sec (25° - θ) – tan(55° - θ) + cot(35° +θ)
= sec {90°-(65°+θ)} – sec (25° - θ) – tan(55° - θ) + tan {90°-(35° +θ)}
[∵ cosec θ = sec (90° - θ) and cot θ = tan (90° - θ)]
= sec ( 90° - 65°-θ) – sec (25° - θ) – tan(55° - θ) + tan (90°- 35° - θ)
= sec (25° - θ) - sec (25° - θ) – tan(55° - θ) + tan (55° - θ)
= 0

Question 35 

Find the value off the following:
$\frac{\cos 35^{\circ}}{\sin 55^{\circ}}+\frac{\sin 11^{\circ}}{\cos 79^{\circ}}-\cos 28^{\circ} \cdot \operatorname{cosec} 62^{\circ}$
Sol :
$=\frac{\cos 35^{\circ}}{\sin 55^{\circ}}+\frac{\sin 11^{\circ}}{\cos 79^{\circ}}-\cos 28^{\circ} \operatorname{cosec} 62^{\circ}$

$=\frac{\sin \left(90^{\circ}-35^{\circ}\right)}{\sin 55^{\circ}}+\frac{\sin 11^{\circ}}{\sin \left(90^{\circ}-79^{\circ}\right)}-\sin \left(90^{\circ}-28^{\circ}\right) \operatorname{cosec} 62^{\circ}$

$=\frac{\sin 55^{\circ}}{\sin 55^{\circ}}+\frac{\sin 11^{\circ}}{\sin 11^{\circ}}-\sin 62^{\circ} \operatorname{cosec} 62^{\circ}$

$=1+1-\sin 62^{\circ} \times \frac{1}{\sin 62^{\circ}}$
= 1 + 1 – 1
= 1

Question 36 

Find the value off the following:
$\frac{\cos ^{2} 20^{\circ}+\cos ^{2} 70^{\circ}}{\sin ^{2} 59^{\circ}+\sin ^{2} 31^{\circ}}$
Sol :
$=\frac{\cos ^{2} 20^{\circ}+\cos ^{2} 70^{\circ}}{\sin ^{2} 59^{\circ}+\sin ^{2} 31^{\circ}}$

$=\frac{\cos ^{2} 20^{\circ}+\sin ^{2}\left(90^{\circ}-70^{\circ}\right)}{\sin ^{2}\left(59^{\circ}\right)+\cos ^{2}\left(90^{\circ}-31^{\circ}\right)}$
[∵ cos θ = sin (90° - θ) and sec θ = cosec (90° - θ)]

$=\frac{\cos ^{2} 20^{\circ}+\sin ^{2} 20^{\circ}}{\sin ^{2}\left(59^{\circ}\right)+\cos ^{2} 59^{\circ}}$
= 1

Question 37 

Find the value off the following:
cosec (65° + θ) – sec (25° - θ)
Sol :
cosec (65° + θ) – sec (25° - θ)
= sec {90°-(65°+θ)} – sec (25° - θ)
[∵ cosec θ = sec (90° - θ)]
= sec ( 90° - 65°-θ) – sec (25° - θ)
= sec (25° - θ) - sec (25° - θ)
= 0

Question 38 

Find the value off the following:
cos (60° + θ) – sin (30° - θ)
Sol :
cos (60° + θ) – sin (30° - θ)
= sin {90°-(60°+θ)} – sin (30° - θ) [∵ cos θ = sin (90° - θ)]
= sin ( 90° - 60°-θ) – sin (30° - θ)
= sin (30° - θ) - sin (30° - θ)
= 0

Question 39 

Find the value off the following:
sec 70°. sin 20° - cos 20°. cosec 70°
Sol :
sec 70° sin 20° - cos 20° cosec 70°
= cosec (90°-70°) cos (90° - 20°)- cos 20° cosec 70°
[∵ sec θ = cosec (90° - θ) and Sin θ = cos (90° - θ)]
= cosec 70° cos 20° - cos 20° cosec 70°
=0

Question 40 

Find the value off the following:
(sin 72° + cos 18°)( sin 72° - cos 18°)
Sol :
(sin 72° + cos 18°)( sin 72° - cos 18°)
Using the identity , (a-b)(a+b) = a2 – b2
= (sin 72°)2 - (cos 18°)2
= {cos(90° - 72°)}2 - (cos 18°)2 [∵ Sin θ = cos (90° - θ)]
=(cos 18°)2 - (cos 18°)2
= 0

Question 41 

Find the value off the following:
$\left(\frac{\sin 35^{\circ}}{\cos 55^{\circ}}\right)^{2}+\left(\frac{\cos 55^{\circ}}{\sin 35^{\circ}}\right)-2 \cos 60^{\circ}$
Sol :
$=\left(\frac{\sin 35^{\circ}}{\cos 55^{\circ}}\right)^{2}+\left(\frac{\cos 55^{\circ}}{\sin 35^{\circ}}\right)^{2}-2 \cos 60^{\circ}$
$=\left(\frac{\sin 35^{\circ}}{\sin \left(90^{\circ}-55^{\circ}\right)}\right)^{2}+\left(\frac{\sin \left(90^{\circ}-55^{\circ}\right)}{\sin 35^{\circ}}\right)^{2}-2 \cos 60^{\circ}$ [∵ cos θ = sin (90° - θ)]

$=\left(\frac{\sin 35^{\circ}}{\sin 35^{\circ}}\right)^{2}+\left(\frac{\sin 35^{\circ}}{\sin 35^{\circ}}\right)^{2}-2\left(\frac{1}{2}\right)$
= 1 + 1 - 1
= 1

Question 42 

Find the value off the following:
$\frac{\cos 80^{\circ}}{\sin 10^{\circ}}+\cos 59^{\circ} \cdot \operatorname{cosec} 31^{\circ}$
Sol :
$=\frac{\cos 80^{\circ}}{\sin 10^{\circ}}+\cos 59^{\circ} \operatorname{cosec} 31^{\circ}$

$=\frac{\sin \left(90^{\circ}-80^{\circ}\right)}{\sin 10^{\circ}}+\sin \left(90^{\circ}-59^{\circ}\right) \operatorname{cosec} 31^{\circ}$

$=\frac{\sin 10^{\circ}}{\sin 10^{\circ}}+\sin 31^{\circ} \operatorname{cosec} 31^{\circ}$

$=1+\sin 31^{\circ} \times \frac{1}{\sin 31^{\circ}}$
= 1 + 1
= 2

Question 43 

Find the value off the following:
(sin 50° + θ)- cos (40° - θ) + tan 1°. tan 10° tan 20°. tan 70°. tan 80°. tan 89°
Sol :
(sin 50° + θ)- cos (40° -θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89°

= cos {90° -(50° + θ)} - cos (40° -θ)+ cot(90° - 1°) tan (90° - 10°) cot(90° - 20°) tan 70° tan 80° tan 89° [∵ Sin θ = cos (90° - θ) & tan θ = cot (90° - θ)]

= cos (40° -θ) - cos (40° -θ) + cot89° cot80° cot70° tan 70° tan 80° tan 89°

$=\frac{1}{\tan 89^{\circ}} \times \frac{1}{\tan 80^{\circ}} \times \frac{1}{\tan 70^{\circ}} \times \tan 70^{\circ} \tan 80^{\circ} \tan 89^{\circ}$ $\left[\because \cot \theta=\frac{1}{\tan \theta}\right]$
= 1

Question 44 

Find the value off the following:
$\sec ^{2} 10^{\circ}-\cot ^{2} 80^{\circ}+\frac{\sin 15^{\circ} \cos 75^{\circ}+\cos 15^{\circ} \cdot \sin 75^{\circ}}{\cos \theta \sin (90-\theta)+\sin \theta \cos \left(90^{\circ}-\theta\right)}$
Sol :
$=\sec ^{2} 10^{\circ}-\cot ^{2} 80^{\circ}+\frac{\sin 15^{\circ} \cos 75^{\circ}+\cos 15^{\circ} \sin 75^{\circ}}{\cos \theta \sin \left(90^{\circ}-\theta\right)+\sin \theta \cos \left(90^{\circ}-\theta\right)}$

$=\sec ^{2} 10^{\circ}-\tan ^{2}\left(90^{\circ}-80^{\circ}\right)+\frac{\cos \left(90^{\circ}-15^{\circ}\right) \cos 75^{\circ}+\sin \left(90^{\circ}-15^{\circ}\right) \sin 75^{\circ}}{\cos \theta \sin \left(90^{\circ}-\theta\right)+\sin \theta \cos \left(90^{\circ}-\theta\right)}$

[∵ cot θ = tan (90° - θ), cos θ = sin (90° - θ) and Sin θ = cos (90° - θ)]

$=\sec ^{2} 10^{\circ}-\tan ^{2} 10^{\circ}+\frac{\cos 75^{\circ} \cos 75^{\circ}+\sin 75^{\circ} \sin 75^{\circ}}{\cos \theta \cos (\theta)+\sin \theta \sin \theta}$
[∵ 1+tan2 θ =sec2 θ and cos2 θ +sin2θ = 1]

$=1+\frac{\cos ^{2} 75^{\circ}+\sin ^{2} 75^{\circ}}{\cos ^{2} \theta+\sin ^{2} \theta}$
= 1 + 1
= 2

Question 45 

Find the value off the following:
$\cos \left(40^{\circ}+\theta\right)-\sin \left(50^{\circ}-\theta\right)+\frac{\cos ^{2} 40^{\circ}+\cos ^{2} 50^{\circ}}{\sin ^{2} 40^{\circ}+\sin ^{2} 50^{\circ}}$
Sol :
$\cos \left(40^{\circ}+\theta\right)-\sin \left(50^{\circ}-\theta\right)+\frac{\cos ^{2} 40^{\circ}+\cos ^{2} 50^{\circ}}{\sin ^{2} 40^{\circ}+\sin ^{2} 50^{\circ}}$

$=\sin \left\{90^{\circ}-\left(40^{\circ}+\theta\right)\right\}-\sin \left(50^{\circ}-\theta\right)+\frac{\cos ^{2} 40^{\circ}+\sin ^{2}\left(90^{\circ}-50^{\circ}\right)}{\sin ^{2} 40^{\circ}+\cos ^{2}\left(90^{\circ}-50^{\circ}\right)}$
[∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ)]

$=\sin \left(50^{\circ}-\theta\right)-\sin \left(50^{\circ}-\theta\right)+\frac{\cos ^{2} 40^{\circ}+\sin ^{2}\left(40^{\circ}\right)}{\sin ^{2} 40^{\circ}+\cos ^{2}\left(40^{\circ}\right)}$
= 0 + 1
= 1

Question 46 

Find the value off the following:
$=\frac{\cos 70^{\circ}}{\sin 20^{\circ}}+\frac{\cos 55^{\circ}, \cos \mathrm{ec} 35^{\circ}}{\tan 5^{\circ} \cdot \tan 25^{\circ} \cdot \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}}$
Sol :
$=\frac{\cos 70^{\circ}}{\sin 20^{\circ}}+\frac{\cos 55^{\circ} \operatorname{cosec} 35^{\circ}}{\tan 5^{\circ} \tan 25^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}}$

$=\left(\frac{\sin \left(90^{\circ}-70^{\circ}\right)}{\sin 20^{\circ}}\right)+\frac{\sin \left(90^{\circ}-55^{\circ}\right) \operatorname{cosec} 35^{\circ}}{\cot \left(90^{\circ}-5^{\circ}\right) \cot \left(90^{\circ}-25^{\circ}\right) \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}}$
[∵ cos θ = sin (90° - θ) and tan θ = cot (90° - θ)]

$=\frac{\sin 20^{\circ}}{\sin 20^{\circ}}+\frac{\sin 35^{\circ} \operatorname{cosec} 35^{\circ}}{\cot 85^{\circ} \cot 65^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}}$

$=1+\frac{\sin 35^{\circ} \times \frac{1}{\sin 35^{\circ}}}{\frac{1}{\tan 85^{\circ}} \times \frac{1}{\tan 65^{\circ}} \times \tan 45^{\circ} \times \tan 65^{\circ} \times \tan 85^{\circ}}$
= 1 + 1 [∵ tan 45° = 1]
= 2

Question 47 

Find the value off the following:
$\left(\frac{\sin 27^{\circ}}{\cos 63^{\circ}}\right)^{2}+\left(\frac{\cos 63^{\circ}}{\sin 27^{\circ}}\right)^{2}$
Sol :
$=\left(\frac{\sin 27^{\circ}}{\cos 63^{\circ}}\right)^{2}+\left(\frac{\cos 63^{\circ}}{\sin 27^{\circ}}\right)^{2}$
$=\left(\frac{\sin 27^{\circ}}{\sin \left(90^{\circ}-63^{\circ}\right)}\right)^{2}+\left(\frac{\sin \left(90^{\circ}-63^{\circ}\right)}{\sin 27^{\circ}}\right)^{2}$ [∵ cos θ = sin (90° - θ)]
$=\left(\frac{\sin 27^{\circ}}{\sin 27^{\circ}}\right)^{2}+\left(\frac{\sin 27^{\circ}}{\sin 27^{\circ}}\right)^{2}$
= 1 + 1
= 2

Question 48 A 

Evaluate the following
$\frac{3 \sin 5^{\circ}}{\cos 85^{\circ}}+\frac{2 \cos 33^{\circ}}{\sin 57^{\circ}}$
Sol :
$=\frac{3 \sin 5^{\circ}}{\cos 85^{\circ}}+\frac{2 \cos 33^{\circ}}{\sin 57^{\circ}}$
$=\frac{3 \sin 5^{\circ}}{\sin \left(90^{\circ}-85^{\circ}\right)}+\frac{2 \sin \left(90^{\circ}-33^{\circ}\right)}{\sin 57^{\circ}}$ [∵ cos θ = sin (90° - θ)]
$=\frac{3 \sin 5^{\circ}}{\sin 5^{\circ}}+\frac{2 \sin 57^{\circ}}{\sin 57^{\circ}}$
= 3 + 2
= 5

Question 48 B 

Evaluate the following
$\frac{\cot 54^{\circ}}{\tan 36^{\circ}}+\frac{\tan 20^{\circ}}{\cot 70^{\circ}}-2$
Sol :
$\frac{\cot 54^{\circ}}{\tan 36^{\circ}}+\frac{\tan 20^{\circ}}{\cot 70^{\circ}}-2$
$=\frac{\cot 54^{\circ}}{\cot \left(90^{\circ}-36^{\circ}\right)}+\frac{\cot \left(90^{\circ}-20^{\circ}\right)}{\cot 70^{\circ}}-2$ [∵ tan θ = cot (90° - θ)]
$=\frac{\cot 54^{\circ}}{\cot 54^{\circ}}+\frac{\cot 70^{\circ}}{\cot 70^{\circ}}-2$
= 1 +1 – 2
= 0

Question 48 C 

Evaluate the following
$\frac{\cos 80^{\circ}}{\sin 10^{\circ}}+\cos 59^{\circ} \operatorname{cosec} 31^{\circ}$
Sol :
$\frac{\cos 80^{\circ}}{\sin 10^{\circ}}+\cos 59^{\circ} \operatorname{cosec} 31^{\circ}$

$=\frac{\cos 80^{\circ}}{\cos \left(90^{\circ}-10^{\circ}\right)}+\sin \left(90^{\circ}-59^{\circ}\right) \operatorname{cosec} 31^{\circ}$
[∵ cos θ = sin (90° - θ) and sec θ = cosec (90° - θ)]

$=\frac{\cos 80^{\circ}}{\cos 80^{\circ}}+\sin 31^{\circ} \operatorname{cosec} 31^{\circ}$

$=1+\sin 31^{\circ} \times \frac{1}{\sin 31^{\circ}}$ $\because \sin \theta=\frac{1}{\operatorname{cosec} \theta}$
= 1 + 1
= 2

Question 48 D 

Evaluate the following
cos38° cos52° – sin38° sin 52°
Sol :
We know that
cos θ = sin (90° - θ)
=sin (90° - 38°) sin (90° -52°) – sin 38° sin 52°
= sin 52° sin 38°– sin 38° sin 52°
=0

Question 48 E 

Evaluate the following
sec41° sin49° + cos49° cosec 41°
Sol :
We know that
sec θ = cosec (90° - θ) and cos θ = sin (90° - θ)
Cosec (90° – 41°) sin 49° + sin (90° – 49°) cosec 41°
= cosec 49° sin 49° + sin 41° cosec 41°
$=\frac{1}{\sin 49^{\circ}} \times \sin 49^{\circ}+\sin 41^{\circ} \times \frac{1}{\sin 41^{\circ}}$ $\left[\because \sin \theta=\frac{1}{\operatorname{cosec} \theta}\right]$
= 1+ 1
= 2

S.no Chapters Links
1 Real numbers Exercise 1.1
Exercise 1.2
Exercise 1.3
Exercise 1.4
2 Polynomials Exercise 2.1
Exercise 2.2
Exercise 2.3
3 Pairs of Linear Equations in Two Variables Exercise 3.1
Exercise 3.2
Exercise 3.3
Exercise 3.4
Exercise 3.5
4 Trigonometric Ratios and Identities Exercise 4.1
Exercise 4.2
Exercise 4.3
Exercise 4.4
5 Triangles Exercise 5.1
Exercise 5.2
Exercise 5.3
Exercise 5.4
Exercise 5.5
6 Statistics Exercise 6.1
Exercise 6.2
Exercise 6.3
Exercise 6.4
7 Quadratic Equations Exercise 7.1
Exercise 7.2
Exercise 7.3
Exercise 7.4
Exercise 7.5
8 Arithmetic Progressions (AP) Exercise 8.1
Exercise 8.2
Exercise 8.3
Exercise 8.4
9 Some Applications of Trigonometry: Height and Distances Exercise 9.1
10 Coordinates Geometry Exercise 10.1
Exercise 10.2
Exercise 10.3
Exercise 10.4
11 Circles Exercise 11.1
Exercise 11.2
12 Constructions Exercise 12.1
13 Area related to Circles Exercise 13.1
14 Surface Area and Volumes Exercise 14.1
Exercise 14.2
Exercise 14.3
Exercise 14.4
15 Probability Exercise 15.1

No comments:

Post a Comment

Contact Form

Name

Email *

Message *