KC Sinha Mathematics Solution Class 10 Chapter 2 Polynomials Exercise 2.2


Exercise 2.1
Exercise 2.2
Exercise 2.3

Exercise 2.2


Question 1 A 

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:
x2 – 3
Sol :
Let f (x) = x2 – 3
Now, if we recall the identity
(a2 – b2) = (a – b)(a + b)
Using this identity, we can write
x2 – 3 = (x – √3) (x + √3)
So, the value of x2 – 3 is zero when x = √3 or x = – √3
Therefore, the zeroes of x2 – 3 are √3 and – √3.
Verification
Now,
Sum of zeroes = α + β = √3 + ( – √3) = 0 or

$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{0}{1}=0$

Product of zeroes = αβ = (√3)( – √3) = – 3 or

$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{-3}{1}=-3$

So, the relationship between the zeroes and the coefficients is verified.

Question 1 B 

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:
2x2 – 8x + 6
Sol :
Let f(x) = 2x2 – 8x + 6
By splitting the middle term, we get
f(x) = 2 x2 – (2 + 6)x + 6 [ – 8 = – (2 + 6) and 2×6 = 12]
= 2 x2 – 2x – 6x + 6
= 2x(x – 1) – 6(x – 1)
= (2x – 6) (x – 1)
On putting f(x) = 0, we get
(2x – 6) (x – 1) = 0
2x – 6 = 0 or x – 1 = 0
x = 3 or x = 1
Thus, the zeroes of the given polynomial 2 x2 – 8x + 6 are 1 and 3
Verification
Sum of zeroes = α + β = 3 + 1 = 4 or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{(-8)}{2}=4$

Product of zeroes = αβ = (3)(1) = 3 or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{6}{2}=3$
So, the relationship between the zeroes and the coefficients is verified.

Question 1 C 

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:
x2 – 2x – 8
Sol :
Let f(x) = x2 – 2x – 8
By splitting the middle term, we get
f(x) = x2 – 4x + 2x – 8 [ – 2 = 2 – 4 and 2×4 = 8]
= x(x – 4) + 2(x – 4)
= (x + 2) (x – 4)
On putting f(x) = 0, we get
(x + 2) (x – 4) = 0
 x + 2 = 0 or x – 4 = 0
x = – 2 or x = 4
Thus, the zeroes of the given polynomial x2 – 2x – 8 are – 2 and 4
Verification
Sum of zeroes = α + β = – 2 + 4 = 2 or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{(-2)}{1}=2$

Product of zeroes = αβ = ( – 2)(4) = – 8 or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{-8}{1}=-8$

So, the relationship between the zeroes and the coefficients is verified.

Question 1 D 

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:
3x2 + 5x – 2
Sol :
Let f(x) = 3x2 + 5x – 2
By splitting the middle term, we get
f(x) = 3x2 + (6 – 1)x – 2 [ 5 = 6 – 1 and 2×3 = 6]
= 3x2 + 6x – x – 2
= 3x(x + 2) – 1(x + 2)
= (3x – 1) (x + 2)
On putting f(x) = 0 , we get
(3x – 1) (x + 2) = 0
 3x – 1 = 0 or x + 2 = 0
$\Rightarrow \mathrm{x}=\frac{1}{3}$ or x = – 2
Thus, the zeroes of the given polynomial 3x2 + 5x – 2 are – 2 and 
Verification

Sum of zeroes
$=\alpha+\beta=\frac{1}{3}+(-2)$
$=\frac{1-6}{3}=-\frac{5}{3}$
  or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{5}{3}$

$=\alpha \beta=\left(\frac{1}{3}\right)(-2)=\frac{-2}{3}$

Product of zeroes or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{-2}{3}$
So, the relationship between the zeroes and the coefficients is verified.

Question 1 E 

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:
3x2 – x – 4
Sol :
Let f(x) = 3x2 – x – 4
By splitting the middle term, we get
f(x) = 3x2 – (4 – 3)x – 4 [ – 1 = 3 – 4 and 4×3 = 12]
= 3x2 + 3x – 4x – 4
= 3x(x + 1) – 4(x + 1)
= (3x – 4) (x + 1)
On putting f(x) = 0, we get
(3x – 4) (x + 1) = 0
 3x – 4 = 0 or x + 1 = 0
$\Rightarrow x=\frac{4}{3}$ or x = – 1
Thus, the zeroes of the given polynomial 3x2 – x – 4 are – 1 and $\frac{4}{3}$

Verification

Sum of zeroes
$=\alpha+\beta=\frac{4}{3}+(-1)$
$=\frac{4-3}{3}=\frac{1}{3}$
 or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{(-1)}{3}=\frac{1}{3}$

Product of zeroes
$=\alpha \beta=\left(\frac{4}{3}\right)(-1)=\frac{-4}{3}$ 
or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{-4}{3}$
So, the relationship between the zeroes and the coefficients is verified.

Question 1 F 

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:
x2 + 7x + 10
Sol :
Let f(x) = x2 + 7x + 10
By splitting the middle term, we get
f(x) = x2 + 5x + 2x + 10 [ 7 = 2 + 5 and 2×5 = 10]
= x(x + 5) + 2(x + 5)
= (x + 2) (x + 5)
On putting f(x) = 0 , we get
(x + 2) (x + 5) = 0
 x + 2 = 0 or x + 5 = 0
x = – 2 or x = – 5
Thus, the zeroes of the given polynomial x2 + 7x + 10 are – 2 and – 5
Verification
Sum of zeroes = α + β = – 2 + ( – 5) = – 7 or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{7}{1}=-7$

Product of zeroes = αβ = ( – 2)( – 5) = 10 or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{10}{1}=10$
So, the relationship between the zeroes and the coefficients is verified.

Question 1 G 

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:
t2 – 15
Sol :
Let f(x) = t2 – 15
Now, if we recall the identity
(a2 – b2) = (a – b)(a + b)
Using this identity, we can write
t2 – 15 = (t – √15) (x + √15)
So, the value of t2– 15 is zero when t = √15 or t = – √15
Therefore, the zeroes of t2– 15 are √15 and – √15.
Verification
Now,
Sum of zeroes = α + β = √15 + ( – √15) = 0 or
$=-\frac{\text { Coefficient of } \mathrm{t}}{\text { Coefficient of } \mathrm{t}^{2}}=-\frac{0}{1}=0$

Product of zeroes = αβ = (√15)( – √15) = – 15 or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{t}^{2}}=\frac{-15}{1}=-15$
So, the relationship between the zeroes and the coefficients is verified.

Question 1 H 

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:
4 s2 – 4s + 1
Sol :
Let f(x) = 4 s2 – 4s + 1
By splitting the middle term, we get
f(x) = 4 s2 – (2 – 2)s + 1 [ – 4 = – (2 + 2) and 2×2 = 4]
= 4 s2 – 2s – 2s + 1
= 2s(2s – 1) – 1(2s – 1)
= (2s – 1) (2s – 1)
On putting f(x) = 0 , we get
(2s – 1) (2s – 1) = 0
 2s – 1 = 0 or 2s – 1 = 0
$\Rightarrow s=\frac{1}{2}$ or $s=\frac{1}{2}$
Thus, the zeroes of the given polynomial 4 s2 – 4s + 1 are $\frac{1}{2}$ and $\frac{1}{2}$
Verification
Sum of zeroes $=\alpha+\beta=\frac{1}{2}+\frac{1}{2}$=1
 or
$=-\frac{\text { Coefficient of } s}{\text { Coefficient of } s^{2}}=-\frac{(-4)}{4}=1$

Product of zeroes $=\alpha \beta=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$   or

$=\frac{\text { Constant term }}{\text { Coefficient of } s^{2}}=\frac{1}{4}$
So, the relationship between the zeroes and the coefficients is verified.

Question 2 A 

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:
8x2– 22x – 21
Sol :
Let f(x) = 8x2 – 22x – 21
By splitting the middle term, we get
f(x) = 8x2 – 28x + 6x – 21
= 4x(2x – 7) + 3(2x – 7)
= (4x + 3) (2x – 7)
On putting f(x) = 0 , we get
(4x + 3) (2x – 7) = 0
 4x + 3 = 0 or 2x – 7 = 0
⇒ x = $\frac{-3}{4}$  or x = $\frac{7}{2}$
Thus, the zeroes of the given polynomial 8x2 – 22x – 21 are $\frac{-3}{4}$ and $\frac{7}{2}$
Verification
Sum of zeroes $=\alpha+\beta=\frac{-3}{4}+\frac{7}{2}=\frac{-3+14}{4}=\frac{11}{4}$       or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{(-22)}{8}=\frac{11}{4}$
The product of zeroes $=\alpha \beta=\frac{-3}{4} \times \frac{7}{2}=\frac{-21}{8}$            or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{-21}{8}$
So, the relationship between the zeroes and the coefficients is verified.

Question 2 B 

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:
2x2 – 7x
Sol :
Let f(x) = 2 x2 – 7x
In this the constant term is zero.
f(x) = 2 x2 – 7x
= x(2x – 7)
On putting f(x) = 0 , we get
x(2x – 7) = 0
 2x – 7 = 0 or x = 0
 ⇒ X = $\frac{7}{2}$ or x = 0
Thus, the zeroes of the given polynomial 2x2 – 7x are 0 and $\frac{7}{2}$
Verification
Sum of zeroes $=\alpha+\beta=0+\frac{7}{2}=\frac{7}{2}$        or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{(-7)}{2}=\frac{7}{2}$
Product of zeroes $=\alpha \beta=0 \times \frac{7}{2}=0$              or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{0}{2}=0$
So, the relationship between the zeroes and the coefficients is verified.

Question 2 C 

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:
10x2 + 3x – 1
Sol :
Let f(x) = 10x2 + 3x – 1
By splitting the middle term, we get
f(x) = 10x2 – 2x + 5x – 1
= 2x(5x – 1) + 1(5x – 1)
= (2x + 1) (5x – 1)
On putting f(x) = 0, we get
(2x + 1) (5x – 1) = 0
 2x + 1 = 0 or 5x – 1 = 0
⇒ X = $\frac{-1}{2}$  or  X =$\frac{1}{5}$
Thus, the zeroes of the given polynomial10x2 + 3x – 1 are $\frac{-1}{2}$ and $\frac{1}{5}$
Verification
Sum of zeroes $=\alpha+\beta=\frac{-1}{2}+\frac{1}{5}=\frac{-5+2}{10}=\frac{-3}{10}$  or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{3}{10}=-\frac{3}{10}$
Product of zeroes $=\alpha \beta=\frac{-1}{2} \times \frac{1}{5}=\frac{-1}{10}$             or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{-1}{10}$
So, the relationship between the zeroes and the coefficients is verified.

Question 2 D 

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:
px2 + (2q – p2)x – 2pq, p≠0
Sol :
Let f(x) = px2 + (2q – p2)x – 2pq
f(x) = px2 + 2qx – p2 x – 2pq
= x(px + 2q) – p(px + 2q)
= (x – p) (px + 2q)
On putting f(x) = 0, we get
(x – p) (px + 2q) = 0
 x – p = 0 or px + 2q = 0
x = p or X = $\frac{-2 q}{p}$
Thus, the zeroes of the given polynomial px2 + (2q – p2)x – 2pq are p and $\frac{-2 q}{p}$
Verification
Sum of zeroes $=\alpha+\beta=p+\frac{(-2 q)}{p}=\frac{p^{2}-2 q}{p}$        or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{\left(-\mathrm{p}^{2}+2 \mathrm{q}\right)}{\mathrm{p}}=\frac{\mathrm{p}^{2}-2 \mathrm{q}}{\mathrm{p}}$
Product of zeroes $=\alpha \beta=p \times \frac{-2 q}{p}=-2 q$         or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{-2 \mathrm{pq}}{\mathrm{p}}=-2 \mathrm{q}$
So, the relationship between the zeroes and the coefficients is verified.

Question 2 E 

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:
x2 – (2a + b)x + 2ab
Sol :
Let f(x) = x2 – (2a + b)x + 2ab
f(x) = x2 – 2ax – bx + 2ab
= x(x – 2a) – b(x – 2a)
= (x – 2a) (x – b)
On putting f(x) = 0 , we get
(x – 2a) (x – b) = 0
 x – 2a = 0 or x – b = 0
x = 2a or x = b
Thus, the zeroes of the given polynomial x2 – (2a + b)x + 2ab are 2a and b
Verification
Sum of zeroes = α + β = 2a + b      or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{(-2 \mathrm{a}-\mathrm{b})}{1}=2 \mathrm{a}+\mathrm{b}$
Product of zeroes = αβ = 2a × b = 2ab       or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{2 \mathrm{ab}}{1}=2 \mathrm{ab}$
So, the relationship between the zeroes and the coefficients is verified.

Question 2 F 

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:
r2s2x2 + 6rstx + 9t2
Sol :
Let f(x) = r2s2x2 + 6rstx + 9t2
Now, if we recall the identity
(a + b)2 = a2 + b2 + 2ab
Using this identity, we can write
r2s2x2 + 6rstx + 9t2 = (rsx + 3t)2
On putting f(x) = 0 , we get
(rsx + 3t)2 = 0

$\Rightarrow X=\frac{-3 t}{r s}, \frac{-3 t}{r s}$
Thus, the zeroes of the given polynomial r2s2x2 + 6rstx + 9t2 are $\frac{-3 t}{r s}$ and$\frac{-3 t}{r s}$
Verification
Sum of zeroes $=\alpha+\beta=\frac{-3 t}{r s}+\frac{-3 t}{r s}=-\frac{6 t}{r s}$       or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{6 \mathrm{rst}}{\mathrm{r}^{2} \mathrm{s}^{2}}=-\frac{6 \mathrm{t}}{\mathrm{rs}}$
Product of zeroes $=\alpha \beta=\frac{-3 \mathrm{t}}{\mathrm{rs}} \times \frac{-3 \mathrm{t}}{\mathrm{rs}}=\frac{9 \mathrm{t}^{2}}{\mathrm{r}^{2} \mathrm{s}^{2}}$          or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{9 \mathrm{t}^{2}}{\mathrm{r}^{2} \mathrm{s}^{2}}$
So, the relationship between the zeroes and the coefficients is verified.

Question 3 A 

Find the zeroes of the quadratic polynomial 5x2 – 8x – 4 and verify the relationship between the zeroes and the coefficients of the polynomial.
Sol :
Let f(x) = 5x2 – 8x – 4
By splitting the middle term, we get
f(x) = 5x2 – 10x + 2x – 4
= 5x(x – 2) + 2(x – 2)
= (5x + 2) (x – 2)
On putting f(x) = 0 we get
(5x + 2) (x – 2) = 0
 5x + 2 = 0 or x – 2 = 0
⇒ X = $\frac{-2}{5}$ or x = 2
Thus, the zeroes of the given polynomial5x2 – 8x – 4 are $\frac{-2}{5}$ and 2
Verification
Sum of zeroes $=\alpha+\beta=\frac{-2}{5}+2=\frac{-2+10}{5}=\frac{8}{5}$          or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{(-8)}{5}=\frac{8}{5}$
Product of zeroes $=\alpha \beta=\frac{-2}{5} \times 2=\frac{-4}{5}$                          or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{-4}{5}$
So, the relationship between the zeroes and the coefficients is verified.

Question 3 B 

Find the zeroes of the quadratic polynomial 4 x2 – 4x – 3 and verify the relationship between the zeroes and the coefficients of the polynomial.
Sol :
Let f(x) = 4 x2 – 4x – 3
By splitting the middle term, we get
f(x) = 4 x2 – 6x + 2x – 3
= 2x(2x – 3) + 1(2x – 3)
= (2x + 1) (2x – 3)
On putting f(x) = 0, we get
(2x + 1) (2x – 3) = 0
 2x + 1 = 0 or 2x – 3 = 0
⇒ X = $\frac{-1}{2}$  or  X = $\frac{3}{2}$
Thus, the zeroes of the given polynomial4x2 – 4x – 3 are $\frac{-1}{2}$ and $\frac{3}{2}$
Verification
Sum of zeroes $=\alpha+\beta=\frac{-1}{2}+\frac{3}{2}=\frac{-1+3}{2}=1$                or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{(-4)}{4}=1$
Product of zeroes $=\alpha \beta=\frac{-1}{2} \times \frac{3}{2}=\frac{-3}{4}$            or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{-3}{4}$
So, the relationship between the zeroes and the coefficients is verified.

Question 3 C 

Find the zeroes of the quadratic polynomial √3 x2 – 8x + 4√3 .
Sol :
Let f(x) = √3 x2 – 8x + 4√3
By splitting the middle term, we get
(x) = √3 x2 – 6x – 2x + 4√3
= √3 x(x – 2√3) – 2(x – 2√3)
= (√3 x – 2) (x – 2√3)
On putting f (x) = 0, we get
(√3 x – 2) (x – 2√3) = 0
 √3 x – 2 = 0 or x – 2√(3 = 0)
$\Rightarrow \mathrm{X}=\frac{2}{\sqrt{3}}$ or X =  $2 \sqrt{3}$
Thus, the zeroes of the given polynomial√3 x2 – 8x + 4√3 are $\frac{2}{\sqrt{3}}$ and $2 \sqrt{3}$
Verification
Sum of zeroes $=\alpha+\beta=\frac{2}{\sqrt{3}}+2 \sqrt{3}=\frac{2+6}{\sqrt{3}}=\frac{8}{\sqrt{3}}$ or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{(-8)}{\sqrt{3}}=\frac{8}{\sqrt{3}}$
Product of zeroes $=\alpha \beta=\frac{2}{\sqrt{3}} \times 2 \sqrt{3}=4$                    or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{4 \sqrt{3}}{\sqrt{3}}=4$
So, the relationship between the zeroes and the coefficients is verified.

Question 4 

If α and β be the zeroes of the polynomial 2x2 + 3x – 6, find the values of
(i) α2 + β2 (ii) α2 + β2 + αβ
(iii) α2β + αβ2 (iv)$\frac{1}{\alpha}+\frac{1}{\beta}$
(v)$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$ (vi) α – β
(vii) α3 + β3 (viii)$\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$
Sol :
Let the quadratic polynomial be 2 x2 + 3x – 6, and its zeroes are α and β.
We have
$\alpha+\beta=\frac{-b}{2}$ and $\alpha \beta=\frac{c}{a}$
Here, a = 2 , b = 3 and c = – 6
$\alpha+\beta=\frac{-b}{a}=\frac{-3}{2}$ ….(1)
$\alpha \beta=\frac{c}{a}=\frac{-6}{2}=-3$ ….(2)
(i) α2 + β2
We have to find the value of α2 + β2
Now, if we recall the identity
(a + b)2 = a2 + b2 + 2ab
Using the identity, we get
(α + β)2 = α2 + β2 + 2αβ
$\Rightarrow\left(\frac{-3}{2}\right)^{2}=\alpha^{2}+\beta^{2}+2(-3)$   {from eqn (1) &(2)} $\Rightarrow \frac{9}{4}=\alpha^{2}+\beta^{2}-6$
$\Rightarrow \alpha^{2}+\beta^{2}=\frac{9}{4}+6$
$\Rightarrow \alpha^{2}+\beta^{2}=\frac{9+24}{4}=\frac{33}{4}$

(ii) α2 + β2 + αβ
$\alpha^{2}+\beta^{2}=\frac{33}{4}$ { from part (i)}
and, we have αβ = – 3
So, $\alpha^{2}+\beta^{2}+\alpha \beta=\frac{33}{4}+(-3)$
= $\frac{33-12}{4}$
= $=\frac{21}{4}$

(iii) α2β + α β2
Firstly, take $\alpha \beta$ common, we get
αβ(α + β)
and we already know the value of $\alpha \beta$ and $\alpha+\beta$.
So, α2β + α β2 = αβ(α + β)
$=(-3)\left(\frac{-3}{2}\right)$ {from eqn (1) and (2)}
$=\frac{9}{2}$

(iv) $\frac{1}{\alpha}+\frac{1}{\beta}$
Let’s take the LCM first then we get,
$\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\beta+\alpha}{\alpha \beta}$
$=\frac{\left(\frac{-3}{2}\right)}{-3}$
$=\frac{1}{2}$

(v) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
Let’s take the LCM first then we get,
$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\beta \alpha}$
$=\frac{\left(\frac{33}{4}\right)}{-3}$    {from part(i) and eqn (2)}
$=\frac{-11}{4}$

(vi) $\alpha-\beta$
Now, recall the identity
(a – b)2 = a2 + b2 – 2ab
Using the identity , we get
(α – β)2 = α2 + β2 – 2 αβ
$\Rightarrow(\alpha-\beta)^{2}=\left(\frac{33}{4}\right)-2(-3)$ {from part(i) and eqn (2)}
$\Rightarrow(\alpha-\beta)^{2}=\frac{33}{4}+6$
$\Rightarrow(\alpha-\beta)^{2}=\frac{33+24}{4}=\frac{57}{4}$
$\Rightarrow(\alpha-\beta)=\pm \frac{\sqrt{57}}{2}$

(vii) $\alpha^{3}+\beta^{3}$
Now, recall the identity
(a + b)3 = a3 + b3 + 3a2 b + 3ab2
Using the identity, we get
(α + β)3 = α3 + β3 + 3α2 β + 3αβ2
$\Rightarrow\left(\frac{-3}{2}\right)^{3}=\alpha^{3}+\beta^{3}+3\left(\alpha^{2} \beta+\alpha \beta^{2}\right)$
$\Rightarrow \frac{-27}{8}=\alpha^{3}+\beta^{3}+3 \times \frac{9}{2}$
$\Rightarrow \alpha^{3}+\beta^{3}=\frac{-27-108}{8}$
$\Rightarrow \alpha^{3}+\beta^{3}=-\frac{135}{4}$

(viii) $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$
Let’s take the LCM first then we get,
$\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}=\frac{\alpha^{3}+\beta^{3}}{\beta \alpha}$
$=\frac{\left(\frac{-135}{8}\right)}{-3}$ {from part(vii) and eqn (2)}
$=\frac{45}{8}$

Question 5 

If α and β be the zeroes of the polynomial ax2 + bx + c, find the values of
(i) $\mathrm{a}^{2}+\beta^{2}$
(ii) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
(ii) $\alpha^{3}+\beta^{3}$

Sol :
Let the quadratic poynomial be ax2 + bx + c , and its zeroes be α and β.
We have
α + β = $\frac{-b}{a}$ and α β = $\frac{c}{a}$
(i) $\mathrm{a}^{2}+\beta^{2}$
We have to find the value of $\alpha^{2}+\beta^{2}$
Now, if we recall the identity
(a + b)2 = a2 + b2 + 2ab
Using the identity, we get $(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta$
$\Rightarrow\left(\frac{-b}{a}\right)^{2}=\alpha^{2}+\beta^{2}+2 \times \frac{c}{a}$ {from eqn (1) & (2)}
$\Rightarrow \frac{b^{2}}{a^{2}}=\alpha^{2}+\beta^{2}+\frac{2 c}{a}$
$\Rightarrow \alpha^{2}+\beta^{2}=\frac{b^{2}}{a^{2}}-\frac{2 c}{a}$
$\Rightarrow \alpha^{2}+\beta^{2}=\frac{b^{2}-2 c a}{a^{2}}$

(ii) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
Let’s take the LCM first then we get,
$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\beta \alpha}$
$=\frac{\left(\frac{b^{2}-2 c a}{a^{2}}\right)}{\frac{c}{a}}$ {$\because \alpha \beta=\frac{c}{a}$}
$=\frac{b^{2}-2 c a}{c a}$

(iii) $\alpha^{3}+\beta^{3}$
Now, recall the identity
(a + b)3 = a3 + b3 + 3a2 b + 3ab2
Using the identity, we get
(α + β)3 = α3 + β3 + 3α2 β + 3αβ2
$\Rightarrow\left(\frac{-b}{a}\right)^{3}=\alpha^{3}+\beta^{3}+3\left(\alpha^{2} \beta+\alpha \beta^{2}\right)$
$\Rightarrow\left(\frac{-b^{3}}{a^{3}}\right)=\alpha^{3}+\beta^{3}+3 \alpha \beta(\alpha+\beta)$
$\Rightarrow \alpha^{3}+\beta^{3}=\left(\frac{-b^{3}}{a^{3}}\right)+3 \times \frac{c}{a} \times\left(\frac{-b}{a}\right)$
$\Rightarrow \alpha^{3}+\beta^{3}=\frac{3 a b c-b^{3}}{a^{3}}$

Question 6 

If α, β are the zeroes of the quadratic polynomial x2 + kx = 12, such that α – β = 1, find the value of k.
Sol :
The given quadratic polynomial is x2 + kx = 12 and $\alpha{-} \beta$ = 1
If we rearrange the polynomial then we get
p(x) = x2 + kx – 12
We have,
$\alpha+\beta=\frac{-b}{a}$ and $\alpha \beta=\frac{c}{a}$
So, $\alpha+\beta=\frac{-\mathrm{b}}{\mathrm{a}}=\frac{-\mathrm{k}}{1}=-\mathrm{k}$ …(1)
$\alpha \beta=\frac{c}{a}=\frac{-12}{1}=-12$ …(2)
Now, if we recall the identities
(a + b)2 = a2 + b2 + 2ab
Using the identity, we get
(α + β)2 = α2 + β2 + 2 αβ
( – k)2 = α2 + β2 + 2( – 12)
 α2 + β2 = k2 + 24 …(3)
Again, using the identity
(a – b)2 = a2 + b2 – 2ab
Using the identity, we get
(α – β)2 = α2 + β2 – 2 αβ
(1)2 = α2 + β2 – 2( – 12) { (α – β) = 1}
 α2 + β2 = 1 – 24
 α2 + β2 = – 23 …(4)
From eqn (3) and (4), we get
k2 + 24 = – 23
 k2 = – 23 – 24
 k2 = – 47
Now the square can never be negative, so the value of k is imaginary.

Question 7 

If the sum of squares of the zeroes of the quadratic polynomial x2 – 8x + k is 40, find k.
Sol :
Given : p(x) = x2 – 8x + k
α2 + β2 = 40
We have,
$\alpha+\beta=\frac{-b}{a}$
and $\alpha \beta=\frac{c}{a}$
So, $\alpha+\beta=\frac{-b}{a}=\frac{-(-8)}{1}=8$ …(1)
$\alpha \beta=\frac{c}{a}=\frac{k}{1}=k$ …(2)
Now, if we recall the identities
(a + b)2 = a2 + b2 + 2ab
Using the identity, we get
(α + β)2 = α2 + β2 + 2 αβ
(8)2 = 40+ 2(k)
2k = 64 – 40
$\Rightarrow \mathrm{k}=\frac{24}{2}$= 12

Question 8 A 

If one zero of the polynomial (α2 + 9) x2 + 13x + 6α is reciprocal of the other, find the value of a.
Sol :
Let one zero of the given polynomial is $\alpha$
According to the given condition,
The other zero of the polynomial is $=\frac{1}{a}$
We have,
Product of zeroes, $\alpha \beta=\frac{c}{a}=\frac{6 \alpha}{\alpha^{2}+9}$
$\Rightarrow \alpha \times \frac{1}{\alpha}=\frac{6 \alpha}{\alpha^{2}+9}$
 α2 – 6α + 9 = 0
 α2 – 3α – 3α + 9 = 0
 α(α – 3) – 3(α – 3) = 0
(α – 3)(α – 3) = 0
(α – 3) = 0 & (α – 3) = 0
 α = 3, 3

Question 8 B 

If the product of zeroes of the polynomial α2 – 6x – 6 is 4, find the value of a.
Sol :
Given Product of zeroes, α β = 4
p(x) = α x2 – 6x – 6
to find: value of α
We know,
Product of zeroes , $\alpha \beta=\frac{c}{a}=\frac{-6}{\alpha}$
$\Rightarrow 4=\frac{-6}{\alpha}$
$\Rightarrow \alpha=\frac{-6}{4}=\frac{-3}{2}$


Question 8 C 

If (x + a) is a factor 2x2 + 2ax + 5x + 10, find a.
Sol :
Given x + a is a factor of $2 x^{2}+2 a x+5 x+10$
So,g(x) = x + a
x + a = 0
x = – a
Putting the value x = – a in the given polynomial, we get
2( – a)2 + 2a( – a) + 5( – a) + 10 = 0
2a2 – 2a2 – 5a + 10 = 0
– 5a + 10 = 0
$a=\frac{-10}{-5}$
a = 2

Question 9 A 

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:
1,1
Sol :
Given: Sum of zeroes = α + β = 1
Product of zeroes = αβ = 1
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= x2 – (1)x + 1
= x2 – x + 1

Question 9 B 

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:
0,3
Sol :
Given: Sum of zeroes = α + β = 0
Product of zeroes = αβ = 3
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= x2 – (0)x + 3
= x2 + 3

Question 9 C 

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:
$\frac{1}{4},-1$
Sol :
Given: Sum of zeroes = α + β = 1/4
Product of zeroes = αβ = – 1
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= $X^{2}-\left(\frac{1}{4}\right) x+(-1)$
= $x^{2}-\frac{x}{4}-1$
= $\frac{4 x^{2}-x-4}{4}$
We can consider 4x2 – x – 4 as required quadratic polynomial because it will also satisfy the given conditions.

Question 9 D 

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:
4,1
Sol :
Given: Sum of zeroes = $\alpha+\beta$ = 4
Product of zeroes = $\alpha \beta$ = 1
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= x2 – (4)x + 1
= x2 – 4x + 1

Question 9 E 

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:
$\frac{10}{3},-1$
Sol :
Given: Sum of zeroes $=\alpha+\beta=\frac{10}{3}$
Product of zeroes = αβ = – 1
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= $x^{2}-\left(\frac{10}{3}\right) X+(-1)$
= $X^{2}-\frac{10 x}{3}-1$
= $\frac{3 x^{2}-10 x-3}{3}$
We can consider 3x2 – 10x – 3 as required quadratic polynomial because it will also satisfy the given conditions.

Question 9 F 

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:
$-\frac{1}{2},-\frac{1}{2}$
Sol :
Given: Sum of zeroes $=\alpha+\beta=-\frac{1}{2}$
Product of zeroes $=\alpha \beta=-\frac{1}{2}$
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= $X^{2}-\left(-\frac{1}{2}\right) X+\left(-\frac{1}{2}\right)$
= $X^{2}+\frac{x}{2}-\frac{1}{2}$
= $\frac{2 x^{2}+x-1}{2}$
We can consider 2x2 + x – 1 as required quadratic polynomial because it will also satisfy the given conditions.

Question 10 A 

Find quadratic polynomial whose zeroes are :
3, – 3
Sol :
Let the zeroes of the quadratic polynomial be
α = 3 , β = – 3
Then, α + β = 3 + ( – 3) = 0
αβ = 3 × ( – 3) = – 9
Sum of zeroes = α + β = 0
Product of zeroes = αβ = – 9
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= x2 – (0)x + ( – 9)
= x2 – 9

Question 10 B 

Find quadratic polynomial whose zeroes are :
$\frac{2+\sqrt{5}}{2}, \frac{2-\sqrt{5}}{2}$
Sol :
Let the zeroes of the quadratic polynomial be
$\alpha=\frac{2+\sqrt{5}}{2}, \beta=\frac{2-\sqrt{5}}{2}$
Then, $\alpha+\beta=\frac{2+\sqrt{5}}{2}+\frac{2-\sqrt{5}}{2}=\frac{2+\sqrt{5}+2-\sqrt{5}}{2}=2$

$\alpha \beta=\frac{2+\sqrt{5}}{2} \times \frac{2-\sqrt{5}}{2}$

$=\frac{(2+\sqrt{5})(2-\sqrt{5})}{4}=\frac{4-5}{4}$

$=\frac{-1}{4}$

Sum of zeroes = α + β = 2
Product of zeroes = $\alpha \beta$ = $-\frac{1}{4}$
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= $X^{2}-(2) X+\left(-\frac{1}{4}\right)$
= $X^{2}-2 X-\frac{1}{4}$
= $\frac{4 x^{2}-8 x-1}{2}$
We can consider 4x2 – 8x – 1 as required quadratic polynomial because it will also satisfy the given conditions.

Question 10 C 

Find quadratic polynomial whose zeroes are :
$3+\sqrt{7}, 3-\sqrt{7}$
Sol :
Let the zeroes of the quadratic polynomial be
α = 3 + √7, β = 3 – √7
Then, α + β = 3 + √7 + 3 – √7 = 6
αβ = (3 + √(7)) × (3 – √7) = 9 – 7 = 2
Sum of zeroes = α + β = 6
Product of zeroes = αβ = 2
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= x2 – (6)x + 2
= x2 – 6x + 2

Question 10 D 

Find quadratic polynomial whose zeroes are :
$1+2 \sqrt{3}, 1-2 \sqrt{3}$
Sol :
Let the zeroes of the quadratic polynomial be
α = 1 + 2√3, β = 1 – 2√3
Then, α + β = 1 + 2√3 + 1 – 2√3 = 2
αβ = (1 + 2√3) × (1 – 2√3) = 1 – 12 = – 11
Sum of zeroes = α + β = 2
Product of zeroes = αβ = – 11
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= x2 – (2)x + ( – 11)
= x2 – 2x – 11

Question 10 E 

Find quadratic polynomial whose zeroes are :
$\frac{2-\sqrt{3}}{3}, \frac{2+\sqrt{3}}{3}$
Sol :
Let the zeroes of the quadratic polynomial be
$\alpha=\frac{2-\sqrt{3}}{3}, \beta=\frac{2+\sqrt{3}}{3}$
Then, $\alpha+\beta=\frac{2-\sqrt{3}}{3}+\frac{2+\sqrt{3}}{3}=\frac{2-\sqrt{3}+2+\sqrt{3}}{3}=\frac{4}{3}$
$\alpha \beta=\frac{2-\sqrt{3}}{3} \times \frac{2+\sqrt{3}}{3}=\frac{(2-\sqrt{3})(2+\sqrt{3})}{9}=\frac{4-3}{9}=\frac{1}{9}$
Sum of zeroes $=\alpha+\beta=\frac{4}{3}$
Product of zeroes $=\alpha \beta=\frac{1}{9}$
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= $X^{2}-\left(\frac{4}{3}\right) X+\left(\frac{1}{9}\right)$
= $X^{2}-\frac{4}{3} X+\frac{1}{9}$
= $\frac{9 x^{2}-12 x+1}{2}$
We can consider 9x2 – 12x + 1 as required quadratic polynomial because it will also satisfy the given conditions.

Question 10 F 

Find quadratic polynomial whose zeroes are :
$\sqrt{2}, 2 \sqrt{2}$
Sol :
Let the zeroes of the quadratic polynomial be
α = √2, β = 2√2
Then, α + β = √2 + 2√2 = √2 (1 + 2) = 3√2
αβ = √2× 2√2 = 4
Sum of zeroes = α + β = 3√2
Product of zeroes = αβ = 4
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= x2 – (3√2)x + 4
= x2 – 3√2 x + 4

Question 11 

Find the quadratic polynomial whose zeroes are square of the zeroes of the polynomial x2 – x – 1.
Sol :
Let the zeroes of the polynomial x2 – x – 1 be α and β
We have,
$\alpha+\beta=\frac{-\mathrm{b}}{\mathrm{a}}$
and $\alpha \beta=\frac{c}{a}$
So,
$\alpha+\beta=\frac{-b}{a}=-\frac{-1}{1}=1$
$\alpha \beta=\frac{c}{a}=\frac{-1}{1}=-1$
Now, according to the given condition,
α2 β2 = ( – 1)2 = 1
& (α + β)2 = α2 + β2 + 2 α β
 α2 + β2 = (α + β)2 – 2αβ
 α2 + β2 = (1)2 – 2( – 1)
 α2 + β2 = 3
So, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= x2 – (3)x + 1
= x2 – 3x + 1

Question 12 A 

If α and β be the zeroes of the polynomial x2 + 10x + 30, then find the quadratic polynomial whose zeroes are α + 2β and 2α + β.
Sol :
Given : p(x) = x2 + 10x + 30
So, Sum of zeroes $=\alpha+\beta=\frac{-b}{a}=\frac{-10}{1}=-10$ …(1)
Product of zeroes $=\alpha \beta=\frac{c}{a}=\frac{30}{1}=30$ …(2)
Now,
Let the zeroes of the quadratic polynomial be
α^' = α + 2β , β' = 2α + β
Then, α’ + β’ = α + 2β + 2α + β = 3α + 3β = 3(α + β)
α'β’ = (α + 2β) ×(2α + β) = 2α2 + 2β2 + 5αβ
Sum of zeroes = 3(α + β)
Product of zeroes = 2α2 + 2β2 + 5αβ
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= x2 – (3(α + β))x + 2α2 + 2β2 + 5αβ
= x2 – 3( – 10)x + 2 (α2 + β2) + 5(30) {from eqn (1) & (2)}
= x2 + 30x + 2(α2 + β2 + 2αβ – 2αβ) + 150
= x2 + 30x + 2 (α + β)2 – 4αβ + 150
= x2 + 30x + 2( – 10)2 – 4(30) + 150
= x2 + 30x + 200 – 120 + 150
= x2 + 30x + 230
So, the required quadratic polynomial is x2 + 30x + 230

Question 12 B 

If α and β be the zeroes of the polynomial x2 + 4x + 3, find the quadratic polynomial whose zeroes are $1+\frac{\alpha}{\beta}$ and $1+\frac{\beta}{\alpha}$.
Sol :
Given : p(x) = x2 + 4x + 3
So, Sum of zeroes $=\alpha+\beta=\frac{-b}{a}=\frac{-4}{1}=-4$ …(1)
Product of zeroes $=\alpha \beta=\frac{c}{a}=\frac{3}{1}=3$ …(2)
Now,
Let the zeroes of the quadratic polynomial be
$\alpha^{\prime}=1+\frac{\alpha}{\beta}, \beta^{\prime}=1+\frac{\beta}{\alpha}$
Then,
$\alpha^{\prime}+\beta^{\prime}=1+\frac{\alpha}{\beta}+1+\frac{\beta}{\alpha}$
$=\frac{2 \alpha \beta+\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{(\alpha+\beta)^{2}}{\alpha \beta}$
$\alpha^{\prime} \beta^{\prime}=\left(1+\frac{\alpha}{\beta}\right) \times\left(1+\frac{\beta}{\alpha}\right)$
$=1+\frac{\beta}{\alpha}+\frac{\alpha}{\beta}+1=\frac{2 \alpha \beta+\alpha^{2}+\beta^{2}}{\alpha \beta}$
$=\frac{(\alpha+\beta)^{2}}{\alpha \beta}$

Sum of zeroes $=\frac{(\alpha+\beta)^{2}}{\alpha \beta}$

Product of zeroes $=\frac{(\alpha+\beta)^{2}}{\alpha \beta}$

Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
$=\mathrm{x}^{2}-\frac{(\alpha+\beta)^{2}}{\alpha \beta} \mathrm{x}+\frac{(\alpha+\beta)^{2}}{\alpha \beta}$
$=x^{2}-\frac{(4)^{2}}{3} x+\frac{(4)^{2}}{3}$ {from eqn (1) & (2)}
$=x^{2}-\frac{16}{3} x+\frac{16}{3}$
$=\frac{3 x^{2}-16 x+16}{3}$
So, the required quadratic polynomial is 3x2 – 16x + 16

Question 13 A 

Find a quadratic polynomial whose zeroes are 1 and – 3. Verify the relation between the coefficients and zeroes of the polynomial.
Sol :
Let the zeroes of the quadratic polynomial be
α = 1 , β = – 3
Then, α + β = 1 + ( – 3) = – 2
αβ = 1 × ( – 3) = – 3
Sum of zeroes = α + β = – 2
Product of zeroes = αβ = – 3
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= x2 – ( – 2)x + ( – 3)
= x2 + 2x – 3
Verification
Sum of zeroes = α + β = 1 + ( – 3) = – 2 or
$=-\frac{\text { Coefficient of } \mathrm{x}}{\text { Coefficient of } \mathrm{x}^{2}}=-\frac{(2)}{1}=-2$

Product of zeroes = αβ = (1)( – 3) = – 3 or
$=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{-3}{1}=-3$

So, the relationship between the zeroes and the coefficients is verified.

Question 13 B 

Find the quadratic polynomial sum of whose zeroes in 8 and their product is 12. Hence find the zeroes of the polynomial.
Sol :
Given: Sum of zeroes = α + β = 8
Product of zeroes = αβ = 12
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= x2 – (8)x + 12
= x2 – 8x + 12
Now, we have
$\alpha+\beta=\frac{-b}{a}$ and $\alpha \beta=\frac{c}{a}$
So,
$\alpha+\beta=\frac{-\mathrm{b}}{\mathrm{a}}=-\frac{-8}{1}=8$
$\alpha \beta=\frac{c}{a}=\frac{12}{1}=12$


S.noChaptersLinks
1Real numbersExercise 1.1
Exercise 1.2
Exercise 1.3
Exercise 1.4
2PolynomialsExercise 2.1
Exercise 2.2
Exercise 2.3
3Pairs of Linear Equations in Two VariablesExercise 3.1
Exercise 3.2
Exercise 3.3
Exercise 3.4
Exercise 3.5
4Trigonometric Ratios and IdentitiesExercise 4.1
Exercise 4.2
Exercise 4.3
Exercise 4.4
5TrianglesExercise 5.1
Exercise 5.2
Exercise 5.3
Exercise 5.4
Exercise 5.5
6StatisticsExercise 6.1
Exercise 6.2
Exercise 6.3
Exercise 6.4
7Quadratic EquationsExercise 7.1
Exercise 7.2
Exercise 7.3
Exercise 7.4
Exercise 7.5
8Arithmetic Progressions (AP)Exercise 8.1
Exercise 8.2
Exercise 8.3
Exercise 8.4
9Some Applications of Trigonometry: Height and DistancesExercise 9.1
10Coordinates GeometryExercise 10.1
Exercise 10.2
Exercise 10.3
Exercise 10.4
11CirclesExercise 11.1
Exercise 11.2
12ConstructionsExercise 12.1
13Area related to CirclesExercise 13.1
14Surface Area and VolumesExercise 14.1
Exercise 14.2
Exercise 14.3
Exercise 14.4
15ProbabilityExercise 15.1

No comments:

Post a Comment

Contact Form

Name

Email *

Message *