Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14 A
Q14 B
Q14 C
Q14 D
Q14 E
Q14 F
Q14 G
Q14 H
Q14 I
Q14 J
Q15 A
Q15 B
Q15 C
Q15 D
Q15 E
Q15 F
Q15 G
Q15 H
Q15 I
Q15 J
Q15 K
Q15 L
Q16 A
Q16 B
Q16 C
Q17
Q18
Q19
Q20
Q21
Q22
Q23
Q24
Q25
Q26
Q27
Q28
Q29
Q30
Q31
Q32
Q33
Q34
Q35
Q36
Q37
Q38
Q39
Q40
Q41
Q42
Q43
Q44
Q45
Q46
Q47
Q48
Q48
Q49
Q50
Q51
Q52
Q53
Exercise
4.1 Exercise 4.2 Exercise 4.3 Exercise 4.4 |
Exercise 4.4
Question 1
Fill in the blanks
(i) sin2 θ cosec2 θ = ……..(ii) 1 + tan2 θ = ……
(iii) Reciprocal sin θ. cot θ = ……
(iv) 1–.......= cos2θ
(v) $\tan A=\frac{\cdots \cdots \cdot}{\cos A}$
(vi) $\ldots \ldots=\frac{\cos A}{\sin A}$
(vii) cos θ is reciprocal of .........
(viii) Reciprocal of sin θ is.........
(ix) Value of sin θ in terms of cos θ is
(x) Value of cos θ in terms of sin θ is
Sol :
(i) Given: sin2 θ cosec2 θ
$\Rightarrow \sin ^{2} \theta \times \frac{1}{\sin ^{2}
\theta}$ $\left[\because \sin \theta=\frac{1}{\csc \theta}\right]$
= 1
= 1
(ii) Given: 1 + tan2 θ
$=1+\left(\frac{\sin \theta}{\cos
\theta}\right)^{2}$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
$=1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}$[∵ cos2 θ + sin2 θ = 1]
$=\frac{1}{\cos ^{2} \theta}$
= sec2 θ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
$=1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}$[∵ cos2 θ + sin2 θ = 1]
$=\frac{1}{\cos ^{2} \theta}$
= sec2 θ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
(iii) Given : sin θ cot θ
Firstly, we simplify the given trigonometry
Firstly, we simplify the given trigonometry
$=\sin \theta \times \frac{\cos \theta}{\sin
\theta}$ $\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right]$
= cos θ
Now, the reciprocal of cos θ is
$=\frac{1}{\cos \theta}$
=sec θ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
= cos θ
Now, the reciprocal of cos θ is
$=\frac{1}{\cos \theta}$
=sec θ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
(iv) Given: 1 – x = cos2θ
Subtracting 1 to both the sides, we get
1 – x –1 = cos2θ – 1
⇒ –x = – sin2θ
⇒ x =sin2 θ
(v) $\tan A=\frac{\sin A}{\cos A}$
(vi) $\cot A=\frac{\cos A}{\sin A}$
(vii) $\cos \theta=\frac{1}{\sec \theta}$
(viii) $\sin \theta=\frac{1}{\cos \theta}$
(ix) We know that
cos2 θ + sin2 θ = 1
⇒ sin2 θ = 1 – cos2 θ
⇒ sin θ = √(1 – cos2 θ)
(x) We know that
cos2 θ + sin2 θ = 1
⇒ cos 2 θ = 1 – sin2 θ
⇒ cos θ = √(1 – sin2 θ)
Question 2
If sin θ= p and cos θ = q, what is the
relation between p and q ?
We know that,
cos2 θ + sin2 θ = 1 …(i)
Given : sin θ = p and cos θ = q
Putting the values of sin θ and cos θ in eq. (i), we get
(q)2 + (p)2 =1
⇒ p2 + q2 =1
Question 3
If cos A = x, express sin A in terms of x
We know that
cos2 θ + sin2 θ = 1
⇒ sin2 θ = 1 – cos2 θ
⇒ sin θ = √(1 – cos2 θ)
And Given that cos θ = x
⇒ sin θ = √(1– x2)
Question 4
If x cos θ = 1 and y sin θ = 1 find the value of tan θ.
Sol :Given x cosθ = 1 and y sinθ = 1
$\Rightarrow \cos \theta=\frac{1}{x}$ and $\sin
\theta=\frac{1}{\mathrm{y}}$
Now, we know that
Now, we know that
$\tan \theta=\frac{\sin \theta}{\cos \theta}$
Putting the value of sin θ and cos θ, we get
$\tan \theta=\frac{\frac{1}{y}}{\frac{1}{x}}$
$\Rightarrow \tan \theta=\frac{x}{y}$
Sol :
We know that
cos2 θ + sin2 θ = 1
⇒ cos2 40° + sin2 40° = 1
⇒ sin2 40° = 1 – cos2 40°
⇒ sin 40° = √(1 – cos2 40°)
And Given that cos 40° = p
⇒ sin 40° = √(1– p2)
We know that
cos2 θ + sin2 θ = 1
⇒ cos2 77° + sin2 77° = 1
⇒ cos 2 77° = 1 – sin2 77°
⇒ cos 77° = √(1 – sin2 77°)
And Given that sin 77° = x
⇒ cos 77° = √(1 – x2 )
We know that
cos2 θ + sin2 θ = 1
⇒ cos2 55° + sin2 55° = 1
⇒ sin2 55° = 1 – cos2 55°
⇒ sin 55° = √(1 – cos2 55°)
And Given that cos 55° = x2
⇒ sin 55° = √{1– (x2)2}
⇒ sin 55° = √(1 – x4)
Sol :
We know that
cos2 θ + sin2 θ = 1
⇒ cos2 50° + sin2 50° = 1
⇒ cos 2 50° = 1 – sin2 50°
⇒ cos 50° = √(1 – sin2 50°)
And Given that sin 50° = a
⇒ cos 50° = √(1 – a2 )
Sol :
Given x cos A = 1 and tan A =y
$\Rightarrow \mathrm{x}=\frac{1}{\cos \mathrm{A}}$ and $\frac{\sin A}{\cos A}=y$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
To find: x2 – y2
Putting the value of sin θ and cos θ, we get
$\tan \theta=\frac{\frac{1}{y}}{\frac{1}{x}}$
$\Rightarrow \tan \theta=\frac{x}{y}$
Question 5
If cos40o = p, then write the value of sin 40o in terms of p.
We know that
cos2 θ + sin2 θ = 1
⇒ cos2 40° + sin2 40° = 1
⇒ sin2 40° = 1 – cos2 40°
⇒ sin 40° = √(1 – cos2 40°)
And Given that cos 40° = p
⇒ sin 40° = √(1– p2)
Question 6
If sin 77° = x, then write the value of cos 77o in terms of x.
Sol :We know that
cos2 θ + sin2 θ = 1
⇒ cos2 77° + sin2 77° = 1
⇒ cos 2 77° = 1 – sin2 77°
⇒ cos 77° = √(1 – sin2 77°)
And Given that sin 77° = x
⇒ cos 77° = √(1 – x2 )
Question 7
If cos55° = x2, then write the value of sin 55o in terms of x.
Sol :We know that
cos2 θ + sin2 θ = 1
⇒ cos2 55° + sin2 55° = 1
⇒ sin2 55° = 1 – cos2 55°
⇒ sin 55° = √(1 – cos2 55°)
And Given that cos 55° = x2
⇒ sin 55° = √{1– (x2)2}
⇒ sin 55° = √(1 – x4)
Question 8
If, sin 50° = α then write the value of cos 50° in terms of α.
We know that
cos2 θ + sin2 θ = 1
⇒ cos2 50° + sin2 50° = 1
⇒ cos 2 50° = 1 – sin2 50°
⇒ cos 50° = √(1 – sin2 50°)
And Given that sin 50° = a
⇒ cos 50° = √(1 – a2 )
Question 9
If x cos A = 1 and tan A = y, then what is the value of x2 – y2.
Given x cos A = 1 and tan A =y
$\Rightarrow \mathrm{x}=\frac{1}{\cos \mathrm{A}}$ and $\frac{\sin A}{\cos A}=y$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
To find: x2 – y2
Putting the values of x and y , we get
$\left(\frac{1}{\cos A}\right)^{2}-\left(\frac{\sin A}{\cos A}\right)^{2}$
$=\frac{1}{\cos ^{2} A}-\frac{\sin ^{2} A}{\cos ^{2} A}$
$=\frac{1-\sin ^{2} A}{\cos ^{2} A}$
$=\frac{\cos ^{2} A}{\cos ^{2} A}$ [∵ cos2 θ + sin2 θ = 1]
= 1
Sol :
Taking LHS = (1 – sinθ)(1+ sinθ)
Using identity , (a + b) (a – b) = (a2 – b2) , we get
= (1)2 – (sinθ)2
= 1 – sin2 θ
= cos2 θ [∵ cos2 θ + sin2 θ = 1]
= RHS
Hence Proved
Sol :
Taking LHS =(1 – cosθ)(1+ cosθ)
Using identity , (a + b) (a – b) = (a2 – b2) , we get
= (1)2 – (cosθ)2
= 1 – cos2 θ
= sin2 θ [∵ cos2 θ + sin2 θ = 1]
= RHS
Hence Proved
Sol :
Taking LHS $\frac{(1-\cos \theta)(1+\cos \theta)}{(1-\sin \theta)(1+\sin \theta)}$
$=\frac{(1)^{2}-(\cos \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}$ [Using identity , (a + b) (a – b) = (a2 – b2)]
$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
= tan2 θ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
= RHS
Hence Proved
Sol :
Taking LHS $=\frac{1}{\sec \theta+\tan \theta}$
Multiplying and divide by the conjugate of sec θ + tan θ
$=\frac{1}{\sec \theta+\tan \theta} \times \frac{\sec \theta-\tan \theta}{\sec \theta-\tan \theta}$
$=\frac{\sec \theta-\tan \theta}{\sec ^{2} \theta-\tan ^{2} \theta}$ [Using identity , (a + b) (a – b) = (a2 – b2)]
= sec θ – tan θ [∵ 1+ tan2 θ = sec2 θ ]
= RHS
Hence Proved
Sol :
Taking LHS = sin θ cot θ
$=\sin \theta \times \frac{\cos \theta}{\sin \theta}\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right]$
= cos θ
=RHS
Hence Proved
Sol :
Sol :
Taking LHS = cos2 A (tan2 A+1)
= cos2 θ (sec2 θ) [∵ 1+ tan2 θ = sec2 θ ]
$\left(\frac{1}{\cos A}\right)^{2}-\left(\frac{\sin A}{\cos A}\right)^{2}$
$=\frac{1}{\cos ^{2} A}-\frac{\sin ^{2} A}{\cos ^{2} A}$
$=\frac{1-\sin ^{2} A}{\cos ^{2} A}$
$=\frac{\cos ^{2} A}{\cos ^{2} A}$ [∵ cos2 θ + sin2 θ = 1]
= 1
Question 10
Prove the followings identities:
(1 – sin θ)(1 + sin θ) = cso2 θSol :
Taking LHS = (1 – sinθ)(1+ sinθ)
Using identity , (a + b) (a – b) = (a2 – b2) , we get
= (1)2 – (sinθ)2
= 1 – sin2 θ
= cos2 θ [∵ cos2 θ + sin2 θ = 1]
= RHS
Hence Proved
Question 11
Prove the followings identities:
(1 + cos θ)(1 – cos θ) = sin2θSol :
Taking LHS =(1 – cosθ)(1+ cosθ)
Using identity , (a + b) (a – b) = (a2 – b2) , we get
= (1)2 – (cosθ)2
= 1 – cos2 θ
= sin2 θ [∵ cos2 θ + sin2 θ = 1]
= RHS
Hence Proved
Question 12
Prove the followings identities:
$\frac{(1-\cos \theta)(1+\cos \theta)}{(1-\sin \theta)(1+\sin \theta)}=\tan ^{2} \theta$Taking LHS $\frac{(1-\cos \theta)(1+\cos \theta)}{(1-\sin \theta)(1+\sin \theta)}$
$=\frac{(1)^{2}-(\cos \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}$ [Using identity , (a + b) (a – b) = (a2 – b2)]
$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
= tan2 θ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
= RHS
Hence Proved
Question 13
Prove the followings identities:
$\frac{1}{\sec \theta+\tan \theta}=\sec \theta-\tan \theta$Taking LHS $=\frac{1}{\sec \theta+\tan \theta}$
Multiplying and divide by the conjugate of sec θ + tan θ
$=\frac{1}{\sec \theta+\tan \theta} \times \frac{\sec \theta-\tan \theta}{\sec \theta-\tan \theta}$
$=\frac{\sec \theta-\tan \theta}{\sec ^{2} \theta-\tan ^{2} \theta}$ [Using identity , (a + b) (a – b) = (a2 – b2)]
= sec θ – tan θ [∵ 1+ tan2 θ = sec2 θ ]
= RHS
Hence Proved
Question 14 A
Prove the following identities :
sinθ. cotθ = cos θSol :
Taking LHS = sin θ cot θ
$=\sin \theta \times \frac{\cos \theta}{\sin \theta}\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right]$
= cos θ
=RHS
Hence Proved
Question 14 B
Prove the following identities :
sin2 θ(1+ cot2 θ) = 1Sol :
Taking LHS = sin2 θ(1+ cot2 θ)
= sin2 θ (cosec2 θ) [∵ cot2 θ +1= cosec2 θ ]
= sin2 θ (cosec2 θ) [∵ cot2 θ +1= cosec2 θ ]
$=\sin ^{2} \theta \times \frac{1}{\sin ^{2}
\theta}$ $\left[\because \sin \theta=\frac{1}{\operatorname{cscec} \theta}\right]$
= 1
=RHS
Hence Proved
= 1
=RHS
Hence Proved
Question 14 C
Prove the following identities :
cos2 A (tan2 A+1) = 1Sol :
Taking LHS = cos2 A (tan2 A+1)
= cos2 θ (sec2 θ) [∵ 1+ tan2 θ = sec2 θ ]
$=\cos ^{2} \theta \times \frac{1}{\cos ^{2}
\theta}$ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
= 1
=RHS
Hence Proved
Sol :
Taking LHS = tan4 θ + tan2 θ
= (tan2 θ)2 + tan2 θ
= ( sec2 θ – 1)2 + (sec2 θ – 1) [∵ 1+ tan2 θ = sec2 θ ]
= sec4 θ + 1 – 2 sec2 θ + sec2 θ – 1 [∵ (a – b)2 = (a2 + b2 – 2ab)]
= sec4 θ – sec2 θ
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{\left(1+\tan ^{2} \theta\right) \sin ^{2} \theta}{\tan \theta}$
$=\frac{\left(\sec ^{2} \theta\right) \sin ^{2} \theta}{\frac{\sin \theta}{\cos \theta}}$ [∵ 1+ tan2 θ = sec2 θ]
$=\frac{1 \times \sin \theta \times \cos \theta}{\cos ^{2} \theta}$ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
$=\frac{\sin \theta}{\cos \theta}$
= tan θ
=RHS
Hence Proved
Sol :
Taking LHS$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+1$
$=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1}{\cos ^{2} \theta}$
= sec2θ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
= 1
=RHS
Hence Proved
Question 14 D
Prove the following identities :
tan4θ + tan2θ = sec4θ – sec2θSol :
Taking LHS = tan4 θ + tan2 θ
= (tan2 θ)2 + tan2 θ
= ( sec2 θ – 1)2 + (sec2 θ – 1) [∵ 1+ tan2 θ = sec2 θ ]
= sec4 θ + 1 – 2 sec2 θ + sec2 θ – 1 [∵ (a – b)2 = (a2 + b2 – 2ab)]
= sec4 θ – sec2 θ
=RHS
Hence Proved
Question 14 E
Prove the following identities :
$\frac{\left(1+\tan ^{2} \theta\right) \sin ^{2} \theta}{\tan \theta}=\tan \theta$Sol :
Taking LHS $=\frac{\left(1+\tan ^{2} \theta\right) \sin ^{2} \theta}{\tan \theta}$
$=\frac{\left(\sec ^{2} \theta\right) \sin ^{2} \theta}{\frac{\sin \theta}{\cos \theta}}$ [∵ 1+ tan2 θ = sec2 θ]
$=\frac{1 \times \sin \theta \times \cos \theta}{\cos ^{2} \theta}$ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
$=\frac{\sin \theta}{\cos \theta}$
= tan θ
=RHS
Hence Proved
Question 14 F
Prove the following identities :
$\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+1=\frac{\tan ^{2} \theta}{\sin ^{2} \theta}$Sol :
Taking LHS$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+1$
$=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1}{\cos ^{2} \theta}$
= sec2θ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
Now, RHS $=\frac{\tan ^{2} \theta}{\sin ^{2} \theta}$
$=\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\sin ^{2}
\theta}$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
$=\frac{\sin ^{2} \theta}{\sin ^{2} \theta \times \cos ^{2} \theta}$
$=\frac{1}{\cos ^{2} \theta}$
= sec2θ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
∴ LHS = RHS
Hence Proved
Sol :
Taking LHS $=\frac{3-4 \sin ^{2} \theta}{\cos ^{2} \theta}$
$=\frac{3}{\cos ^{2} \theta}-\frac{4 \sin ^{2} \theta}{\cos ^{2} \theta}$
= 3 sec2 θ – 4 tan2 θ
We know that,
1+ tan2 θ = sec2 θ
= 3(1+ tan2 θ) – 4 tan2 θ
= 3 + 3 tan2 θ – 4 tan2 θ
= 3 – tan2 θ
=RHS
Hence Proved
Sol :
Taking LHS = (1+ tan2 θ) cos θ sin θ
= (sec2 θ) cos θ sin θ [∵ 1+ tan2 θ = sec2 θ]
$=\frac{\sin ^{2} \theta}{\sin ^{2} \theta \times \cos ^{2} \theta}$
$=\frac{1}{\cos ^{2} \theta}$
= sec2θ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
∴ LHS = RHS
Hence Proved
Question 14 G
Prove the following identities :
$\frac{3-4 \sin ^{2} \theta}{\cos ^{2} \theta}=3-\tan ^{2} \theta$Sol :
Taking LHS $=\frac{3-4 \sin ^{2} \theta}{\cos ^{2} \theta}$
$=\frac{3}{\cos ^{2} \theta}-\frac{4 \sin ^{2} \theta}{\cos ^{2} \theta}$
= 3 sec2 θ – 4 tan2 θ
We know that,
1+ tan2 θ = sec2 θ
= 3(1+ tan2 θ) – 4 tan2 θ
= 3 + 3 tan2 θ – 4 tan2 θ
= 3 – tan2 θ
=RHS
Hence Proved
Question 14 H
Prove the following identities :
(1+ tan2 θ) cos θ. sin θ = tan θSol :
Taking LHS = (1+ tan2 θ) cos θ sin θ
= (sec2 θ) cos θ sin θ [∵ 1+ tan2 θ = sec2 θ]
$=\frac{1}{\cos ^{2} \theta} \times \cos \theta \times \sin
\theta$ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
$=\frac{\sin \theta}{\cos \theta}$
= tan θ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
=RHS
Hence Proved
Sol :
Taking LHS = sin2 θ – cos2 φ
=( 1 – cos2 θ) – (1 – sin2 φ) [∵ cos2 θ + sin2 θ = 1] & [∵ cos2 φ + sin2 φ = 1]
= 1 – cos2 θ – 1 + sin2 φ
= sin2 φ – cos2 θ
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{1-\tan ^{2} \theta}{\cot ^{2} \theta-1}$
$=\frac{1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2} \theta}{\sin ^{2} \theta}-1}$
$=\frac{\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin ^{2} \theta}}$
$=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta} \times \frac{\sin ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$
= tan2 θ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
=RHS
Hence Proved
Sol :
Taking LHS = (1 – cosθ)(1+ cosθ)(1+ cot2 θ)
Using identity , (a + b) (a – b) = (a2 – b2) in first two terms , we get
= (1)2 – (cosθ)2 (cosec2 θ) [∵ cot2 θ +1= cosec2 θ]
= (1 – cos2 θ) (cosec2 θ)
= (sin2 θ) (cosec2 θ) [∵ cos2 θ + sin2 θ = 1]
$=\frac{\sin \theta}{\cos \theta}$
= tan θ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
=RHS
Hence Proved
Question 14 I
Prove the following identities :
sin2θ – cos2 ϕ = sin2ϕ – cos2θSol :
Taking LHS = sin2 θ – cos2 φ
=( 1 – cos2 θ) – (1 – sin2 φ) [∵ cos2 θ + sin2 θ = 1] & [∵ cos2 φ + sin2 φ = 1]
= 1 – cos2 θ – 1 + sin2 φ
= sin2 φ – cos2 θ
=RHS
Hence Proved
Question 14 J
Prove the following identities :
$\frac{1-\tan ^{2} \theta}{\cot ^{2} \theta-1}=\tan ^{2} \theta$Taking LHS $=\frac{1-\tan ^{2} \theta}{\cot ^{2} \theta-1}$
$=\frac{1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2} \theta}{\sin ^{2} \theta}-1}$
$=\frac{\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin ^{2} \theta}}$
$=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta} \times \frac{\sin ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$
= tan2 θ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
=RHS
Hence Proved
Question 15 A
Prove the following identities :
(1 – cosθ)(1+ cosθ)(1+ cot2 θ) = 1Sol :
Taking LHS = (1 – cosθ)(1+ cosθ)(1+ cot2 θ)
Using identity , (a + b) (a – b) = (a2 – b2) in first two terms , we get
= (1)2 – (cosθ)2 (cosec2 θ) [∵ cot2 θ +1= cosec2 θ]
= (1 – cos2 θ) (cosec2 θ)
= (sin2 θ) (cosec2 θ) [∵ cos2 θ + sin2 θ = 1]
$=\sin ^{2} \theta \times \frac{1}{\sin ^{2}
\theta}$ $\left[\because \sin \theta=\frac{1}{\csc \theta}\right]$
=1
= RHS
Hence Proved
Sol :
Taking LHS $=\frac{(1+\sin \theta)^{2}(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}$
$=\frac{1+\sin ^{2} \theta+2 \sin \theta+1+\sin ^{2} \theta-2 \sin \theta}{2 \cos ^{2} \theta}$
[∵ (a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)]
$=\frac{2+2 \sin ^{2} \theta}{2 \cos ^{2} \theta}$
$=\frac{2\left(1+\sin ^{2} \theta\right)}{2\left(1-\sin ^{2} \theta\right)}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1+\sin ^{2} \theta}{1-\sin ^{2} \theta}$
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{\cos ^{2} \theta(1-\cos \theta)}{\sin ^{2} \theta(1-\sin \theta)}$
=1
= RHS
Hence Proved
Question 15 B
Prove the following identities :
$\frac{(1+\sin \theta)^{2}+(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}=\frac{1+\sin ^{2} \theta}{1-\sin ^{2}
\theta}$Sol :
Taking LHS $=\frac{(1+\sin \theta)^{2}(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}$
$=\frac{1+\sin ^{2} \theta+2 \sin \theta+1+\sin ^{2} \theta-2 \sin \theta}{2 \cos ^{2} \theta}$
[∵ (a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)]
$=\frac{2+2 \sin ^{2} \theta}{2 \cos ^{2} \theta}$
$=\frac{2\left(1+\sin ^{2} \theta\right)}{2\left(1-\sin ^{2} \theta\right)}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1+\sin ^{2} \theta}{1-\sin ^{2} \theta}$
=RHS
Hence Proved
Question 15 C
Prove the following identities :
$\frac{\cos ^{2} \theta(1-\cos \theta)}{\sin ^{2} \theta(1-\sin \theta)}=\frac{1+\sin \theta}{1+\cos \theta}$Sol :
Taking LHS $=\frac{\cos ^{2} \theta(1-\cos \theta)}{\sin ^{2} \theta(1-\sin \theta)}$
Multiplying and divide by the conjugate of (1 – sinθ), we get
$=\frac{\cos ^{2} \theta(1-\cos \theta)}{\sin ^{2} \theta(1-\sin \theta)} \times \frac{(1+\sin \theta)}{(1+\sin \theta)}$
$=\frac{\cos ^{2} \theta(1-\cos \theta)(1+\sin \theta)}{\sin ^{2} \theta\left[(1)^{2}-(\sin \theta)^{2}\right]}$
$=\frac{\cos ^{2} \theta(1-\cos \theta)(1+\sin \theta)}{\sin ^{2} \theta \times \cos ^{2} \theta}$
$=\frac{(1-\cos \theta)(1+\sin \theta)}{\sin ^{2} \theta}$
$=\frac{\cos ^{2} \theta(1-\cos \theta)}{\sin ^{2} \theta(1-\sin \theta)} \times \frac{(1+\sin \theta)}{(1+\sin \theta)}$
$=\frac{\cos ^{2} \theta(1-\cos \theta)(1+\sin \theta)}{\sin ^{2} \theta\left[(1)^{2}-(\sin \theta)^{2}\right]}$
$=\frac{\cos ^{2} \theta(1-\cos \theta)(1+\sin \theta)}{\sin ^{2} \theta \times \cos ^{2} \theta}$
$=\frac{(1-\cos \theta)(1+\sin \theta)}{\sin ^{2} \theta}$
Now, multiply and divide by conjugate of 1 – cos θ, we get
$=\frac{(1-\cos \theta)(1+\sin \theta)}{\sin ^{2} \theta} \times \frac{(1+\cos \theta)}{(1+\cos \theta)}$
$=\frac{\left(1^{2}-\cos ^{2} \theta\right)(1+\sin \theta)}{\sin ^{2} \theta(1+\cos \theta)}$
$=\frac{\sin ^{2} \theta(1+\sin \theta)}{\sin ^{2} \theta(1+\cos \theta)}$
$=\frac{1+\sin \theta}{1+\cos \theta}$
=RHS
Hence Proved
Sol :
Taking LHS = (sin θ – cos θ)2
Using the identity,(a – b)2 = (a2 + b2 – 2ab)
= sin2 θ + cos2 θ – 2sin θ cos θ
= 1 – 2sin θ cos θ [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Sol :
Taking LHS = (sin θ + cos θ)2 + (sin θ – cos θ)2
Using the identity,(a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)
= sin2 θ + cos2 θ + 2sin θ cos θ + sin2 θ + cos2 θ – 2sin θ cos θ
= 1 +1 [∵ cos2 θ + sin2 θ = 1]
= 2
=RHS
Hence Proved
Sol :
Taking LHS = (asin θ + bcos θ)2 + (acos θ – bsin θ )2
Using the identity,(a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)
= a2 sin2 θ + b2 cos2 θ + 2 ab sin θ cos θ + a2 cos2 θ + b2 sin2 θ – 2 ab sin θ cos θ
= a2 sin2 θ+ a2 cos2 θ + b2 sin2 θ + b2 cos2 θ
= a2 (sin2 θ + cos2 θ) + b2 (sin2 θ + cos2 θ)
= a2 + b2 [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Sol :
Taking LHS = cos4 A + sin4 A + 2 sin2 A cos2 A
Using the identity,(a + b)2 = (a2 + b2 + 2ab)
Here, a = cos2 A and b = sin2 A
= ( cos2 A + sin2 A) [∵ cos2 θ + sin2 θ = 1]
= 1
Sol :
Given:
$\begin{matrix}\sin ^{4} A-\cos ^{4} A&=2 \sin ^{2} A-1&=1-2 \cos ^{2} A&=\sin ^{2} A-\cos ^{2} A\\ \text{I}&\text{II}&\text{III}&\text{IV}\end{matrix}$
Taking I term
= sin4 A – cos4 A → I term
= (sin2 A)2 – (cos2 A)2
= (sin2 A – cos2 A)(sin2 A+ cos2 A )
[∵ (a2 – b2) = (a + b) (a – b)]
= (sin2 A – cos2 A)(1) [∵ cos2 θ + sin2 θ = 1]
= (sin2 A – cos2 A) …(i) → IV term
From Eq. (i)
= {sin2 A – (1 – sin2 A)} [∵ cos2 θ + sin2 θ = 1]
= sin2 A – 1 + sin2 A
= 2 sin2 A – 1 → II term
Again, From Eq. (i)
= {(1 – cos2 A) – cos2 A } [∵ cos2 θ + sin2 θ = 1]
=1 – 2 cos2 A → III term
Hence, I = II = III = IV
Hence Proved
Sol :
Given:
$=\frac{(1-\cos \theta)(1+\sin \theta)}{\sin ^{2} \theta} \times \frac{(1+\cos \theta)}{(1+\cos \theta)}$
$=\frac{\left(1^{2}-\cos ^{2} \theta\right)(1+\sin \theta)}{\sin ^{2} \theta(1+\cos \theta)}$
$=\frac{\sin ^{2} \theta(1+\sin \theta)}{\sin ^{2} \theta(1+\cos \theta)}$
$=\frac{1+\sin \theta}{1+\cos \theta}$
=RHS
Hence Proved
Question 15 D
Prove the following identities :
(sin θ – cos θ)2 = 1 – 2 sinθ . cos θSol :
Taking LHS = (sin θ – cos θ)2
Using the identity,(a – b)2 = (a2 + b2 – 2ab)
= sin2 θ + cos2 θ – 2sin θ cos θ
= 1 – 2sin θ cos θ [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Question 15 E
Prove the following identities :
(sin θ + cos θ)2 + (sin θ – cos θ)2 = 2Sol :
Taking LHS = (sin θ + cos θ)2 + (sin θ – cos θ)2
Using the identity,(a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)
= sin2 θ + cos2 θ + 2sin θ cos θ + sin2 θ + cos2 θ – 2sin θ cos θ
= 1 +1 [∵ cos2 θ + sin2 θ = 1]
= 2
=RHS
Hence Proved
Question 15 F
Prove the following identities :
(asin θ + bcos θ)2 + (acos θ – bsin θ)2 = a2 +
b2Sol :
Taking LHS = (asin θ + bcos θ)2 + (acos θ – bsin θ )2
Using the identity,(a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)
= a2 sin2 θ + b2 cos2 θ + 2 ab sin θ cos θ + a2 cos2 θ + b2 sin2 θ – 2 ab sin θ cos θ
= a2 sin2 θ+ a2 cos2 θ + b2 sin2 θ + b2 cos2 θ
= a2 (sin2 θ + cos2 θ) + b2 (sin2 θ + cos2 θ)
= a2 + b2 [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Question 15 G
Prove the following identities :
cos4 A + sin4 A + 2 sin2 A. cos2 A =
1Sol :
Taking LHS = cos4 A + sin4 A + 2 sin2 A cos2 A
Using the identity,(a + b)2 = (a2 + b2 + 2ab)
Here, a = cos2 A and b = sin2 A
= ( cos2 A + sin2 A) [∵ cos2 θ + sin2 θ = 1]
= 1
Question 15 H
Prove the following identities :
sin4 A – cos4 A = 2 sin2 A – 1 = 1 – 2 cos2 A
= sin2 A – cos2 ASol :
Given:
$\begin{matrix}\sin ^{4} A-\cos ^{4} A&=2 \sin ^{2} A-1&=1-2 \cos ^{2} A&=\sin ^{2} A-\cos ^{2} A\\ \text{I}&\text{II}&\text{III}&\text{IV}\end{matrix}$
Taking I term
= sin4 A – cos4 A → I term
= (sin2 A)2 – (cos2 A)2
= (sin2 A – cos2 A)(sin2 A+ cos2 A )
[∵ (a2 – b2) = (a + b) (a – b)]
= (sin2 A – cos2 A)(1) [∵ cos2 θ + sin2 θ = 1]
= (sin2 A – cos2 A) …(i) → IV term
From Eq. (i)
= {sin2 A – (1 – sin2 A)} [∵ cos2 θ + sin2 θ = 1]
= sin2 A – 1 + sin2 A
= 2 sin2 A – 1 → II term
Again, From Eq. (i)
= {(1 – cos2 A) – cos2 A } [∵ cos2 θ + sin2 θ = 1]
=1 – 2 cos2 A → III term
Hence, I = II = III = IV
Hence Proved
Question 15 I
Prove the following identities :
cos4 θ – sin4 θ = cos2 θ – sin2 θ = 2
cos2 θ – 1Sol :
Given:
$\begin{matrix}\cos ^{4} \theta-\sin ^{4} \theta&=\cos ^{2}
\theta-\sin ^{2} \theta&=2 \cos ^{2} \theta-1\\ \text{I}&\text{II}&\text{III}\end{matrix}$
Taking I term
= cos4 θ – sin4 θ → I term
= (cos2 θ)2 – (sin2 θ)2
= (cos2 θ – sin2 θ)(cos2 θ+ sin2 θ )
[∵ (a2 – b2) = (a + b) (a – b)]
= (cos2 θ – sin2 θ) (1) [∵ cos2 θ + sin2 θ = 1]
= (cos2 θ – sin2 θ) …(i) → II term
From Eq. (i)
= {cos2 θ – (1 – cos2 θ)} [∵ cos2 θ + sin2 θ = 1]
= 2 cos2 θ – 1 → III term
Hence, I = II = III
Hence Proved
Sol :
Taking LHS = 2 cos2 θ – cos4 θ + sin4 θ
= 2 cos2 θ – (cos4 θ – sin4 θ)
= 2 cos2 θ – [(cos2 θ)2 – (sin2 θ)2]
Using identity, (a2 – b2) = (a + b) (a – b)
= 2 cos2 θ – [(cos2 θ – sin2 θ)(cos2 θ+ sin2 θ )]
= 2 cos2 θ – [(cos2 θ – sin2 θ)(1)] [∵ cos2 θ + sin2 θ = 1]
=2 cos2 θ – cos2 θ + sin2 θ
= cos2 θ + sin2 θ
= 1 [∵ cos2 θ + sin2 θ = 1]
= RHS
Hence Proved
Sol :
Taking LHS = 1 – 2 cos2 θ + cos4 θ
We know that,
cos2 θ + sin2 θ = 1
= 1– 2 cos2 θ + (cos2 θ)2
= 1 – 2 cos2 θ + (1 – sin2 θ)2
= 1 – 2 cos2 θ +1 + sin4 θ – 2sin2θ
= 2 – 2(cos2 θ + sin2θ) + sin4 θ
= 2 – 2(1) + sin4 θ
= sin4 θ
=RHS
Hence Proved
Sol :
Taking LHS = 1 – 2 sin2 θ + sin4 θ
We know that,
cos2 θ + sin2 θ = 1
= 1– 2 sin2 θ + (sin2 θ)2
= 1 – 2 sin2 θ + (1 – cos2 θ)2
= 1 – 2 sin2 θ +1 + cos4 θ – 2cos2θ
= 2 – 2(cos2 θ + sin2θ) + cos4 θ
= 2 – 2(1) + cos4 θ
= cos4 θ
=RHS
Hence Proved
Sol :
Taking LHS = sec2 θ + cosec2 θ
Taking I term
= cos4 θ – sin4 θ → I term
= (cos2 θ)2 – (sin2 θ)2
= (cos2 θ – sin2 θ)(cos2 θ+ sin2 θ )
[∵ (a2 – b2) = (a + b) (a – b)]
= (cos2 θ – sin2 θ) (1) [∵ cos2 θ + sin2 θ = 1]
= (cos2 θ – sin2 θ) …(i) → II term
From Eq. (i)
= {cos2 θ – (1 – cos2 θ)} [∵ cos2 θ + sin2 θ = 1]
= 2 cos2 θ – 1 → III term
Hence, I = II = III
Hence Proved
Question 15 J
Prove the following identities :
2 cos2 θ – cos4 θ + sin4 θ = 1Sol :
Taking LHS = 2 cos2 θ – cos4 θ + sin4 θ
= 2 cos2 θ – (cos4 θ – sin4 θ)
= 2 cos2 θ – [(cos2 θ)2 – (sin2 θ)2]
Using identity, (a2 – b2) = (a + b) (a – b)
= 2 cos2 θ – [(cos2 θ – sin2 θ)(cos2 θ+ sin2 θ )]
= 2 cos2 θ – [(cos2 θ – sin2 θ)(1)] [∵ cos2 θ + sin2 θ = 1]
=2 cos2 θ – cos2 θ + sin2 θ
= cos2 θ + sin2 θ
= 1 [∵ cos2 θ + sin2 θ = 1]
= RHS
Hence Proved
Question 15 K
Prove the following identities :
1 – 2 cos2 θ + cos4 θ = sin4θSol :
Taking LHS = 1 – 2 cos2 θ + cos4 θ
We know that,
cos2 θ + sin2 θ = 1
= 1– 2 cos2 θ + (cos2 θ)2
= 1 – 2 cos2 θ + (1 – sin2 θ)2
= 1 – 2 cos2 θ +1 + sin4 θ – 2sin2θ
= 2 – 2(cos2 θ + sin2θ) + sin4 θ
= 2 – 2(1) + sin4 θ
= sin4 θ
=RHS
Hence Proved
Question 15 L
Prove the following identities :
1 – 2 sin2 θ + sin4 θ = cos4θSol :
Taking LHS = 1 – 2 sin2 θ + sin4 θ
We know that,
cos2 θ + sin2 θ = 1
= 1– 2 sin2 θ + (sin2 θ)2
= 1 – 2 sin2 θ + (1 – cos2 θ)2
= 1 – 2 sin2 θ +1 + cos4 θ – 2cos2θ
= 2 – 2(cos2 θ + sin2θ) + cos4 θ
= 2 – 2(1) + cos4 θ
= cos4 θ
=RHS
Hence Proved
Question 16 A
Prove that the following identities :
sec2θ + cosec2θ = sec2θ.cosec2θSol :
Taking LHS = sec2 θ + cosec2 θ
$=\frac{1}{\cos ^{2} \theta}+\frac{1}{\sin ^{2}
\theta}$ $\because\left[\cos \theta=\frac{1}{\sec \theta}\right]$ and $\left[\sin \theta=\frac{1}{\csc
\theta}\right]$
$=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta \sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1}{\cos ^{2} \theta \sin ^{2} \theta}$
= sec2 θ × cosec2 θ $\because\left[\cos \theta=\frac{1}{\sec \theta}\right]$ and $\left[\sin \theta=\frac{1}{\csc \theta}\right]$
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta}$
$=\frac{1}{\sin \theta}$ [∵ cos2 θ + sin2 θ = 1]
= cosec θ
=RHS
Hence Proved
Sol :
Taking LHS = cot θ + tan θ
$=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta \sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1}{\cos ^{2} \theta \sin ^{2} \theta}$
= sec2 θ × cosec2 θ $\because\left[\cos \theta=\frac{1}{\sec \theta}\right]$ and $\left[\sin \theta=\frac{1}{\csc \theta}\right]$
=RHS
Hence Proved
Question 16 B
Prove that the following identities :
$\frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta=\operatorname{cosec} \theta$Sol :
Taking LHS $=\frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta}$
$=\frac{1}{\sin \theta}$ [∵ cos2 θ + sin2 θ = 1]
= cosec θ
=RHS
Hence Proved
Question 16 C
Prove that the following identities :
cotθ + tan θ = cosec θ . sec θSol :
Taking LHS = cot θ + tan θ
$=\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}$
$\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right]$
and $\left[\tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos \theta \sin \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1}{\cos \theta \sin \theta}$
= cosec θ sec θ $\because\left[\cos \theta=\frac{1}{\sec \theta}\right]$ and $\left[\sin \theta=\frac{1}{\csc \theta}\right]$
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{1-\sin \theta}{1+\sin \theta}$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos \theta \sin \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1}{\cos \theta \sin \theta}$
= cosec θ sec θ $\because\left[\cos \theta=\frac{1}{\sec \theta}\right]$ and $\left[\sin \theta=\frac{1}{\csc \theta}\right]$
=RHS
Hence Proved
Question 17
Prove that the following identities :
$\frac{1-\sin \theta}{1+\sin \theta}=\left(\frac{1-\sin \theta}{\cos \theta}\right)^{2}$Sol :
Taking LHS $=\frac{1-\sin \theta}{1+\sin \theta}$
Multiplying and divide by the conjugate of 1 + sin θ , we get
$=\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}$
$=\frac{(1-\sin \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}$
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
$=\frac{(1-\sin \theta)^{2}}{1-\sin ^{2} \theta}$
$=\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\left(\frac{1-\sin \theta}{\cos \theta}\right)^{2}$
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{1-\cos \theta}{1+\cos \theta}$
$=\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}$
$=\frac{(1-\sin \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}$
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
$=\frac{(1-\sin \theta)^{2}}{1-\sin ^{2} \theta}$
$=\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\left(\frac{1-\sin \theta}{\cos \theta}\right)^{2}$
=RHS
Hence Proved
Question 18
Prove that the following identities :
$\frac{1-\cos \theta}{1+\cos \theta}=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$Sol :
Taking LHS $=\frac{1-\cos \theta}{1+\cos \theta}$
Multiplying and divide by the conjugate of 1 + cos θ , we get
$=\frac{1-\cos \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}$
$=\frac{(1-\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}$
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
$=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}$
$=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{1-\cos \theta}{1+\cos \theta}$
$=\frac{1-\cos \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}$
$=\frac{(1-\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}$
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
$=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}$
$=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$
=RHS
Hence Proved
Question 19
Prove that the following identities :
$\frac{1-\cos \theta}{1+\cos \theta}=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$Sol :
Taking LHS $=\frac{1-\cos \theta}{1+\cos \theta}$
Multiplying and divide by the conjugate of 1 + cos θ , we get
$=\frac{1-\cos \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}$
$=\frac{(1-\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}$
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
$=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}$
$=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{\cos \theta}{1+\sin \theta}$
$=\frac{1-\cos \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}$
$=\frac{(1-\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}$
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
$=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}$
$=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$
=RHS
Hence Proved
Question 20
Prove that the following identities :
$\frac{\cos \theta}{1+\sin \theta}=\frac{1-\sin \theta}{\cos \theta}$Sol :
Taking LHS $=\frac{\cos \theta}{1+\sin \theta}$
Multiplying and divide by the conjugate of 1 + sin θ , we get
$=\frac{\cos \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}$
$=\frac{\cos \theta(1-\sin \theta)}{(1)^{2}-(\sin \theta)^{2}}$ [∵ (a + b) (a – b) = (a2 – b2)]
$=\frac{\cos \theta(1-\sin \theta)}{1-\sin ^{2} \theta}$
$=\frac{\cos \theta(1-\sin \theta)}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1-\sin \theta}{\cos \theta}$
=RHS
Hence Proved
Sol :
Taking LHS
= sin8 θ – cos8 θ
= (sin4 θ)2 – (cos4 θ)2
= (sin4 θ – cos4 θ)(sin4 θ+ cos4 θ )
[∵ (a2 – b2) = (a + b) (a – b)]
= {(sin2 θ)2 – (cos2 θ)2}{(sin2 θ)2 + (cos2 θ)2}
= (sin2 θ + cos2 θ) (sin2 θ – cos2 θ) [(sin2 θ + cos2 θ) – 2 sin2 θ cos2 θ]
[ ∵ (a2 + b2) = (a +b)2 – 2ab]
= (1)[ sin2 θ –cos2 θ][(1) – 2 sin2 θ cos2 θ]
= (sin2 θ – cos2 θ)(1 – 2 sin2 θ cos2 θ)
=RHS
Hence Proved
Sol :
Taking LHS
= 2(sin6 θ – cos6 θ) – 3(sin4 θ+ cos4 θ ) + (sin2 θ + cos2 θ)
= 2[(sin2 θ)3 – (cos2 θ)3 ] – 3[(sin2 θ)2 + (cos2 θ)2 ]+1 [∵ cos2 θ + sin2 θ = 1]
Now, we use these identities, (a3 – b3)= (a + b)3 – 3ab(a+b) and (a2 + b2) = (a +b)2 – 2ab]
= 2[(sin2 θ + cos2 θ)3 – 3sin2θ cos2θ (sin2 θ+ cos2 θ)] –3[(sin2 θ + cos2 θ) – 2 sin2 θ cos2 θ]+ 1
=2[(1) – 3sin2θ cos2θ (1)] – 3[(1) – 2 sin2 θ cos2 θ] + 1 [∵ cos2 θ + sin2 θ = 1]
=2(1 – 3 sin2 θ cos2 θ )– 3 + 6sin2 θ cos2 θ+ 1
= 2– 6sin2θ cos2θ – 2 + 6sin2 θ cos2 θ
=0
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}$
$=\frac{\cos \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}$
$=\frac{\cos \theta(1-\sin \theta)}{(1)^{2}-(\sin \theta)^{2}}$ [∵ (a + b) (a – b) = (a2 – b2)]
$=\frac{\cos \theta(1-\sin \theta)}{1-\sin ^{2} \theta}$
$=\frac{\cos \theta(1-\sin \theta)}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1-\sin \theta}{\cos \theta}$
=RHS
Hence Proved
Question 21
Prove that the following identities :
(sin8θ – cos8θ) = (sin2θ – cos2θ)(1 – 2sin2θ
.cos2θ)Sol :
Taking LHS
= sin8 θ – cos8 θ
= (sin4 θ)2 – (cos4 θ)2
= (sin4 θ – cos4 θ)(sin4 θ+ cos4 θ )
[∵ (a2 – b2) = (a + b) (a – b)]
= {(sin2 θ)2 – (cos2 θ)2}{(sin2 θ)2 + (cos2 θ)2}
= (sin2 θ + cos2 θ) (sin2 θ – cos2 θ) [(sin2 θ + cos2 θ) – 2 sin2 θ cos2 θ]
[ ∵ (a2 + b2) = (a +b)2 – 2ab]
= (1)[ sin2 θ –cos2 θ][(1) – 2 sin2 θ cos2 θ]
= (sin2 θ – cos2 θ)(1 – 2 sin2 θ cos2 θ)
=RHS
Hence Proved
Question 22
Prove that the following identities :
2(sin6 θ – cos6 θ) – 3(sin4 θ + cos4 θ ) +
(sin2 θ + cos2 θ)Sol :
Taking LHS
= 2(sin6 θ – cos6 θ) – 3(sin4 θ+ cos4 θ ) + (sin2 θ + cos2 θ)
= 2[(sin2 θ)3 – (cos2 θ)3 ] – 3[(sin2 θ)2 + (cos2 θ)2 ]+1 [∵ cos2 θ + sin2 θ = 1]
Now, we use these identities, (a3 – b3)= (a + b)3 – 3ab(a+b) and (a2 + b2) = (a +b)2 – 2ab]
= 2[(sin2 θ + cos2 θ)3 – 3sin2θ cos2θ (sin2 θ+ cos2 θ)] –3[(sin2 θ + cos2 θ) – 2 sin2 θ cos2 θ]+ 1
=2[(1) – 3sin2θ cos2θ (1)] – 3[(1) – 2 sin2 θ cos2 θ] + 1 [∵ cos2 θ + sin2 θ = 1]
=2(1 – 3 sin2 θ cos2 θ )– 3 + 6sin2 θ cos2 θ+ 1
= 2– 6sin2θ cos2θ – 2 + 6sin2 θ cos2 θ
=0
=RHS
Hence Proved
Question 23
Prove the following identities
$\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}=\sin A+\cos A$Sol :
Taking LHS $=\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}$
$=\frac{\cos A}{1-\frac{\sin A}{\cos A}}+\frac{\sin A}{1-\frac{\cos
A}{\sin A}}$
$\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right.$
and $\left.\cot \theta=\frac{\cos \theta}{\sin \theta}\right]$
$=\frac{\cos A}{\frac{\cos A-\sin A}{\cos A}}+\frac{\sin A}{\frac{\sin A-\cos A}{\sin A}}$
$=\frac{\cos ^{2} A}{\cos A-\sin A}+\frac{\sin ^{2} A}{\sin A-\cos A}$
$=\frac{\cos ^{2} A-\sin ^{2} A}{\cos A-\sin A}$
$=\frac{\cos A}{\frac{\cos A-\sin A}{\cos A}}+\frac{\sin A}{\frac{\sin A-\cos A}{\sin A}}$
$=\frac{\cos ^{2} A}{\cos A-\sin A}+\frac{\sin ^{2} A}{\sin A-\cos A}$
$=\frac{\cos ^{2} A-\sin ^{2} A}{\cos A-\sin A}$
Using the identity, (a2 – b2)= (a + b) (a – b)
$=\frac{(\cos A-\sin A)(\cos A+\sin A)}{(\cos A-\sin A)}$
= sin A +cos A
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}$
$=\frac{\sin ^{2} \theta+(1+\cos \theta)^{2}}{(1+\cos \theta)(\sin \theta)}$
$=\frac{\sin ^{2} \theta+1+\cos ^{2} \theta+2 \cos \theta}{(1+\cos \theta)(\sin \theta)}$
$=\frac{2+2 \cos \theta}{(1+\operatorname{ses} \theta)(\sin \theta)}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{2(1+\cos \theta)}{(1+\cos \theta)(\sin \theta)}$
$=\frac{2}{\sin \theta}$
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}$
$=\frac{1-\sin \theta+1+\sin \theta}{(1+\sin \theta)(1-\sin \theta)}$
$=\frac{(\cos A-\sin A)(\cos A+\sin A)}{(\cos A-\sin A)}$
= sin A +cos A
=RHS
Hence Proved
Question 24
Prove the following identities
$\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=\frac{2}{\sin \theta}$Sol :
Taking LHS $=\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}$
$=\frac{\sin ^{2} \theta+(1+\cos \theta)^{2}}{(1+\cos \theta)(\sin \theta)}$
$=\frac{\sin ^{2} \theta+1+\cos ^{2} \theta+2 \cos \theta}{(1+\cos \theta)(\sin \theta)}$
$=\frac{2+2 \cos \theta}{(1+\operatorname{ses} \theta)(\sin \theta)}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{2(1+\cos \theta)}{(1+\cos \theta)(\sin \theta)}$
$=\frac{2}{\sin \theta}$
=RHS
Hence Proved
Question 25
Prove the following identities
$\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=2 \sec ^{2} \theta$Sol :
Taking LHS $=\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}$
$=\frac{1-\sin \theta+1+\sin \theta}{(1+\sin \theta)(1-\sin \theta)}$
Using the identity, (a2 – b2)= (a + b) (a – b)
$=\frac{2}{(1)^{2}-(\sin \theta)^{2}}$
$=\frac{2}{1-\sin ^{2} \theta}$
$=\frac{2}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
= 2 sec2 θ
=RHS
Hence Proved
$\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}=2 \sec \theta$
Sol :
Taking LHS $=\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}$
$=\frac{(1+\sin \theta)^{2}+\cos ^{2} \theta}{(1+\sin \theta)(\cos \theta)}$
$=\frac{1+\sin ^{2} \theta+2 \sin \theta+\cos ^{2} \theta}{(\cos \theta)(1+\sin \theta)}$
$=\frac{2+2 \sin \theta}{(\cos \theta)(1+\sin \theta)}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{2(1+\sin \theta)}{(\cos \theta)(1+\sin \theta)}$
$=\frac{2}{\cos \theta}$
=2 sec θ
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}$
$=\frac{\cos \theta(1+\sin \theta)+\cos \theta(1-\sin \theta)}{(1-\sin \theta)(1+\sin \theta)}$
$=\frac{\cos \theta+\cos \theta \sin \theta+\cos \theta-\cos \theta \sin \theta}{(1-\sin \theta)(1+\sin \theta)}$
$=\frac{2 \cos \theta}{(1-\sin \theta)(1+\sin \theta)}$
$=\frac{2}{(1)^{2}-(\sin \theta)^{2}}$
$=\frac{2}{1-\sin ^{2} \theta}$
$=\frac{2}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
= 2 sec2 θ
=RHS
Hence Proved
Question 26
Prove the following identities$\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}=2 \sec \theta$
Sol :
Taking LHS $=\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}$
$=\frac{(1+\sin \theta)^{2}+\cos ^{2} \theta}{(1+\sin \theta)(\cos \theta)}$
$=\frac{1+\sin ^{2} \theta+2 \sin \theta+\cos ^{2} \theta}{(\cos \theta)(1+\sin \theta)}$
$=\frac{2+2 \sin \theta}{(\cos \theta)(1+\sin \theta)}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{2(1+\sin \theta)}{(\cos \theta)(1+\sin \theta)}$
$=\frac{2}{\cos \theta}$
=2 sec θ
=RHS
Hence Proved
Question 27
Prove the following identities
$\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=\frac{2}{\cos \theta}$Sol :
Taking LHS $=\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}$
$=\frac{\cos \theta(1+\sin \theta)+\cos \theta(1-\sin \theta)}{(1-\sin \theta)(1+\sin \theta)}$
$=\frac{\cos \theta+\cos \theta \sin \theta+\cos \theta-\cos \theta \sin \theta}{(1-\sin \theta)(1+\sin \theta)}$
$=\frac{2 \cos \theta}{(1-\sin \theta)(1+\sin \theta)}$
Using the identity, (a2 – b2)= (a + b) (a – b)
$=\frac{2 \cos \theta}{(1)^{2}-(\sin \theta)^{2}}$
$=\frac{2 \cos \theta}{1-\sin ^{2} \theta}$
$=\frac{2 \cos \theta}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{2 \cos \theta}{(1)^{2}-(\sin \theta)^{2}}$
$=\frac{2 \cos \theta}{1-\sin ^{2} \theta}$
$=\frac{2 \cos \theta}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{2}{\cos \theta}$
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{1}{1+\cos \theta}+\frac{1}{1-\cos \theta}$
$=\frac{1-\cos \theta+1+\cos \theta}{(1+\cos \theta)(1-\cos \theta)}$
=RHS
Hence Proved
Question 28
Prove the following identities
$\frac{1}{1+\cos \theta}+\frac{1}{1-\cos \theta}=\frac{2}{\sin ^{2} \theta}$Sol :
Taking LHS $=\frac{1}{1+\cos \theta}+\frac{1}{1-\cos \theta}$
$=\frac{1-\cos \theta+1+\cos \theta}{(1+\cos \theta)(1-\cos \theta)}$
Using the identity, (a2 – b2)= (a + b) (a – b)
$=\frac{2}{(1)^{2}-(\cos \theta)^{2}}$
$=\frac{2}{1-\cos ^{2} \theta}$
$=\frac{2}{\sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{1}{1-\sin \theta}-\frac{1}{1+\sin \theta}$
$=\frac{1+\sin \theta-1+\sin \theta}{(1+\sin \theta)(1-\sin \theta)}$
$=\frac{2}{(1)^{2}-(\cos \theta)^{2}}$
$=\frac{2}{1-\cos ^{2} \theta}$
$=\frac{2}{\sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Question 29
Prove the following identities
$\frac{1}{1-\sin \theta}-\frac{1}{1+\sin \theta}=\frac{2 \tan \theta}{\cos \theta}$Sol :
Taking LHS $=\frac{1}{1-\sin \theta}-\frac{1}{1+\sin \theta}$
$=\frac{1+\sin \theta-1+\sin \theta}{(1+\sin \theta)(1-\sin \theta)}$
Using the identity, (a2 – b2)= (a + b) (a – b)
$=\frac{2 \sin \theta}{(1)^{2}-(\sin \theta)^{2}}$
$=\frac{2 \sin \theta}{1-\sin ^{2} \theta}$
$=\frac{2 \sin \theta}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{2 \tan \theta}{\cos \theta}$
$\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
=RHS
Hence Proved
Sol :
Taking LHS = cot2 θ – cos2 θ
$\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
=RHS
Hence Proved
Question 30
Prove the following identities
cot2θ – cos2θ = cot2θ . cos2θSol :
Taking LHS = cot2 θ – cos2 θ
$=\frac{\cos ^{2} \theta}{\sin ^{2} \theta}-\cos ^{2}
\theta$ $\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right]$
$=\frac{\cos ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta}{\sin ^{2} \theta}$
$=\frac{\cos ^{2} \theta\left(1-\sin ^{2} \theta\right)}{\sin ^{2} \theta}$
[∵ cos2 θ + sin2 θ = 1]
$=\frac{\cos ^{2} \theta \cos ^{2} \theta}{\sin ^{2} \theta}$
= cot2 θ cos2 θ $\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right]$
=RHS
Hence Proved
Sol :
Taking LHS = tan2 φ – sin2 φ – tan2 φ sin2 φ
$=\frac{\sin ^{2} \varphi}{\cos ^{2} \varphi}-\sin ^{2} \varphi-\frac{\sin ^{2} \varphi}{\cos ^{2} \varphi} \sin ^{2} \varphi$
$=\frac{\sin ^{2} \varphi-\sin ^{2} \varphi \cos ^{2} \varphi-\sin ^{4} \varphi}{\cos ^{2} \varphi}$
$=\frac{\sin ^{2} \varphi\left(1-\cos ^{2} \varphi-\sin ^{2} \varphi\right)}{\cos ^{2} \varphi}$
$=\frac{\sin ^{2} \varphi\left\{1-\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)\right]}{\cos ^{2} \varphi}$ [∵ cos2 φ + sin2 φ = 1]
$=\frac{\sin ^{2} \varphi\{1-1\}}{\cos ^{2} \varphi}$
= 0
=RHS
Hence Proved
Sol :
Taking LHS = tan2 φ + cot2 φ + 2
$=\frac{\sin ^{2} \varphi}{\cos ^{2} \varphi}+\frac{\cos ^{2} \varphi}{\sin ^{2} \varphi}+2$
$=\frac{\sin ^{4} \varphi+\cos ^{4} \varphi+2 \sin ^{2} \varphi \cos ^{2} \varphi}{\cos ^{2} \varphi \sin ^{2} \varphi}$ [∵ (a + b)2 = (a2 + b2 + 2ab)]
$=\frac{\left(\sin ^{2} \varphi+\cos ^{2} \varphi\right)^{2}}{\cos ^{2} \varphi \sin ^{2} \varphi}$ [∵ cos2 φ + sin2 φ = 1]
$=\frac{1}{\cos ^{2} \varphi \sin ^{2} \varphi}$
= sec2 φ cosec2 φ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right.$ and $\left.\sin \theta=\frac{1}{\csc \theta}\right]$
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{\operatorname{cosec} \theta+\cot \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$
$=\frac{(\cot \theta+\operatorname{cosec} \theta)-\left(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta\right)}{\cot \theta-\operatorname{cosec} \theta+1}$ [∵ cot2 θ – cosec2 θ = 1]
$=\frac{(\cot \theta+\operatorname{cosec} \theta)-\{(\operatorname{cosec} \theta+\cot \theta)(\operatorname{cosec} \theta-\cot \theta)\}}{\cot \theta-\operatorname{cosec} \theta+1}$
$=\frac{(\cot \theta+\operatorname{cosec} \theta)(1-\operatorname{cosec} \theta+\cot \theta)}{\cot \theta-\operatorname{cosec} \theta+1}$
= cot θ + cosec θ
$=\frac{\cos ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta}{\sin ^{2} \theta}$
$=\frac{\cos ^{2} \theta\left(1-\sin ^{2} \theta\right)}{\sin ^{2} \theta}$
[∵ cos2 θ + sin2 θ = 1]
$=\frac{\cos ^{2} \theta \cos ^{2} \theta}{\sin ^{2} \theta}$
= cot2 θ cos2 θ $\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right]$
=RHS
Hence Proved
Question 31
Prove the following identities
tan2 φ – sin2 φ – tan2 φ . sin2 φ =
0Sol :
Taking LHS = tan2 φ – sin2 φ – tan2 φ sin2 φ
$=\frac{\sin ^{2} \varphi}{\cos ^{2} \varphi}-\sin ^{2} \varphi-\frac{\sin ^{2} \varphi}{\cos ^{2} \varphi} \sin ^{2} \varphi$
$=\frac{\sin ^{2} \varphi-\sin ^{2} \varphi \cos ^{2} \varphi-\sin ^{4} \varphi}{\cos ^{2} \varphi}$
$=\frac{\sin ^{2} \varphi\left(1-\cos ^{2} \varphi-\sin ^{2} \varphi\right)}{\cos ^{2} \varphi}$
$=\frac{\sin ^{2} \varphi\left\{1-\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)\right]}{\cos ^{2} \varphi}$ [∵ cos2 φ + sin2 φ = 1]
$=\frac{\sin ^{2} \varphi\{1-1\}}{\cos ^{2} \varphi}$
= 0
=RHS
Hence Proved
Question 32
Prove the following identities
tan2 φ + cot2 φ + 2 = sec2ϕ. cosec2ϕSol :
Taking LHS = tan2 φ + cot2 φ + 2
$=\frac{\sin ^{2} \varphi}{\cos ^{2} \varphi}+\frac{\cos ^{2} \varphi}{\sin ^{2} \varphi}+2$
$=\frac{\sin ^{4} \varphi+\cos ^{4} \varphi+2 \sin ^{2} \varphi \cos ^{2} \varphi}{\cos ^{2} \varphi \sin ^{2} \varphi}$ [∵ (a + b)2 = (a2 + b2 + 2ab)]
$=\frac{\left(\sin ^{2} \varphi+\cos ^{2} \varphi\right)^{2}}{\cos ^{2} \varphi \sin ^{2} \varphi}$ [∵ cos2 φ + sin2 φ = 1]
$=\frac{1}{\cos ^{2} \varphi \sin ^{2} \varphi}$
= sec2 φ cosec2 φ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right.$ and $\left.\sin \theta=\frac{1}{\csc \theta}\right]$
=RHS
Hence Proved
Question 33
Prove the following identities
$\frac{\operatorname{cosec} \theta+\cot \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}=\frac{1+\cos
\theta}{\sin \theta}$Sol :
Taking LHS $=\frac{\operatorname{cosec} \theta+\cot \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$
$=\frac{(\cot \theta+\operatorname{cosec} \theta)-\left(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta\right)}{\cot \theta-\operatorname{cosec} \theta+1}$ [∵ cot2 θ – cosec2 θ = 1]
$=\frac{(\cot \theta+\operatorname{cosec} \theta)-\{(\operatorname{cosec} \theta+\cot \theta)(\operatorname{cosec} \theta-\cot \theta)\}}{\cot \theta-\operatorname{cosec} \theta+1}$
$=\frac{(\cot \theta+\operatorname{cosec} \theta)(1-\operatorname{cosec} \theta+\cot \theta)}{\cot \theta-\operatorname{cosec} \theta+1}$
= cot θ + cosec θ
$=\frac{\cos \theta}{\sin \theta}+\frac{1}{\sin
\theta}$ $\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right.$ and $\left.\sin \theta=\frac{1}{\csc
\theta}\right]$
$=\frac{1+\cos \theta}{\sin \theta}$
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}$
$=\frac{1+\cos \theta}{\sin \theta}$
=RHS
Hence Proved
Question 34
Prove the following identities
$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\tan \theta+\cot \theta$Sol :
Taking LHS $=\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}$
$=\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\sin
\theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{1-\frac{\sin \theta}{\cos \theta}}$ $\left[\because \cot
\theta=\frac{\cos \theta}{\sin \theta}\right.$ and $\left.\tan \theta=\frac{\sin \theta}{\cos
\theta}\right]$
$=\frac{\frac{\sin \theta}{\sin \theta-\cos \theta}}{\sin \theta}+\frac{\frac{\cos \theta}{\sin \theta}}{\frac{\cos \theta-\sin \theta}{\cos \theta}}$
$=\frac{\sin \theta}{\cos \theta} \times \frac{\sin \theta}{\sin \theta-\cos \theta}+\frac{\cos \theta}{\sin \theta} \times \frac{\cos \theta}{\cos \theta-\sin \theta}$
$=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta(\cos \theta-\sin \theta)}$
$=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta\{-(\sin \theta-\cos \theta)\}}$
$=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}-\frac{\cos ^{2} \theta}{\sin \theta(\sin \theta-\cos \theta)}$
$=\frac{\sin ^{3} \theta-\cos ^{3} \theta}{(\cos \theta \sin \theta)(\sin \theta-\cos \theta)}$
$=\frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)}{(\cos \theta \sin \theta)(\sin \theta-\cos \theta)}$ [∵ (a3 – b3)= (a – b)(a2 +b2 +ab)]
$=\frac{1+\sin \theta \cos \theta}{\cos \theta \sin \theta}$
$=\frac{1}{\cos \theta \sin \theta}+\frac{\sin \theta \cos \theta}{\cos \theta \sin \theta}$
= tan θ cot θ + 1
=RHS
Hence Proved
Sol :
Taking LHS $=\frac{1-\cos \theta}{1+\cos \theta}$
$=\frac{\frac{\sin \theta}{\sin \theta-\cos \theta}}{\sin \theta}+\frac{\frac{\cos \theta}{\sin \theta}}{\frac{\cos \theta-\sin \theta}{\cos \theta}}$
$=\frac{\sin \theta}{\cos \theta} \times \frac{\sin \theta}{\sin \theta-\cos \theta}+\frac{\cos \theta}{\sin \theta} \times \frac{\cos \theta}{\cos \theta-\sin \theta}$
$=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta(\cos \theta-\sin \theta)}$
$=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta\{-(\sin \theta-\cos \theta)\}}$
$=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}-\frac{\cos ^{2} \theta}{\sin \theta(\sin \theta-\cos \theta)}$
$=\frac{\sin ^{3} \theta-\cos ^{3} \theta}{(\cos \theta \sin \theta)(\sin \theta-\cos \theta)}$
$=\frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)}{(\cos \theta \sin \theta)(\sin \theta-\cos \theta)}$ [∵ (a3 – b3)= (a – b)(a2 +b2 +ab)]
$=\frac{1+\sin \theta \cos \theta}{\cos \theta \sin \theta}$
$=\frac{1}{\cos \theta \sin \theta}+\frac{\sin \theta \cos \theta}{\cos \theta \sin \theta}$
= tan θ cot θ + 1
=RHS
Hence Proved
Question 35
Prove the following identities
$\frac{1-\cos \theta}{1+\cos \theta}=(\cot \theta-\operatorname{cosec} \theta)^{2}$Sol :
Taking LHS $=\frac{1-\cos \theta}{1+\cos \theta}$
Multiplying and divide by the conjugate of 1 + cos θ , we get
$=\frac{1-\cos \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}$
$=\frac{(1-\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}$
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
$=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}$
$=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$
$=\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2}$
= (cosec θ – cot θ)2
= { – (cot θ – cosec θ)}2
= (cot θ – cosec θ)2
=RHS
Hence Proved
Sol :
Taking LHS $=\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$
$=\sqrt{\frac{1+\cos \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}}$ [multiplying and divide by conjugate of 1– cosθ]
$=\sqrt{\frac{(1+\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}}$
$=\sqrt{\frac{(1+\cos \theta)^{2}}{\left(1-\cos ^{2} \theta\right)}}$
$=\sqrt{\frac{(1+\cos \theta)^{2}}{\sin ^{2} \theta}}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1+\cos \theta}{\sin \theta}$
=RHS
Hence Proved
Sol :
Taking LHS $=\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$
$=\sqrt{\frac{1+\cos \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}}$ [multiplying and divide by conjugate of 1– cosθ]
$=\sqrt{\frac{(1+\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}}$
$=\sqrt{\frac{(1+\cos \theta)^{2}}{\left(1-\cos ^{2} \theta\right)}}$
$=\sqrt{\frac{(1+\cos \theta)^{2}}{\sin ^{2} \theta}}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1+\cos \theta}{\sin \theta}$
$=\frac{1-\cos \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}$
$=\frac{(1-\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}$
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
$=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}$
$=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$
$=\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2}$
= (cosec θ – cot θ)2
= { – (cot θ – cosec θ)}2
= (cot θ – cosec θ)2
=RHS
Hence Proved
Question 36
Prove the following identities
$\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\frac{1+\cos \theta}{\sin \theta}$Sol :
Taking LHS $=\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$
$=\sqrt{\frac{1+\cos \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}}$ [multiplying and divide by conjugate of 1– cosθ]
$=\sqrt{\frac{(1+\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}}$
$=\sqrt{\frac{(1+\cos \theta)^{2}}{\left(1-\cos ^{2} \theta\right)}}$
$=\sqrt{\frac{(1+\cos \theta)^{2}}{\sin ^{2} \theta}}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1+\cos \theta}{\sin \theta}$
=RHS
Hence Proved
Question 37
Prove the following identities
$\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\frac{\sin \theta}{1-\cos \theta}$Sol :
Taking LHS $=\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$
$=\sqrt{\frac{1+\cos \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}}$ [multiplying and divide by conjugate of 1– cosθ]
$=\sqrt{\frac{(1+\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}}$
$=\sqrt{\frac{(1+\cos \theta)^{2}}{\left(1-\cos ^{2} \theta\right)}}$
$=\sqrt{\frac{(1+\cos \theta)^{2}}{\sin ^{2} \theta}}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1+\cos \theta}{\sin \theta}$
Multiply and divide by conjugate of 1+ cosθ, we get
$=\frac{1+\cos \theta}{\sin \theta} \times \frac{1-\cos \theta}{1-\cos \theta}$
$=\frac{1-\cos ^{2} \theta}{\sin \theta \times(1-\cos \theta)}$
$=\frac{\sin ^{2} \theta}{\sin \theta \times(1-\cos \theta)}$
$=\frac{\sin \theta}{1-\cos \theta}$
=RHS
Hence Proved
Sol :
Taking LHS $=\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$
$=\sqrt{\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}}$ [multiplying and divide by conjugate of 1+sinθ]
$=\sqrt{\frac{(1-\sin \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}}$
$=\sqrt{\frac{(1-\sin \theta)^{2}}{\left(1-\sin ^{2} \theta\right)}}$
$=\sqrt{\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}}$ [∵ cos2 θ + sin2 θ = 1]
=$=\frac{1-\sin \theta}{\cos \theta}$
$=\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}$
= sec θ – tan θ
$=\frac{1+\cos \theta}{\sin \theta} \times \frac{1-\cos \theta}{1-\cos \theta}$
$=\frac{1-\cos ^{2} \theta}{\sin \theta \times(1-\cos \theta)}$
$=\frac{\sin ^{2} \theta}{\sin \theta \times(1-\cos \theta)}$
$=\frac{\sin \theta}{1-\cos \theta}$
=RHS
Hence Proved
Question 38
Prove the following identities
$\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\sec \theta-\tan \theta$Sol :
Taking LHS $=\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$
$=\sqrt{\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}}$ [multiplying and divide by conjugate of 1+sinθ]
$=\sqrt{\frac{(1-\sin \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}}$
$=\sqrt{\frac{(1-\sin \theta)^{2}}{\left(1-\sin ^{2} \theta\right)}}$
$=\sqrt{\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}}$ [∵ cos2 θ + sin2 θ = 1]
=$=\frac{1-\sin \theta}{\cos \theta}$
$=\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}$
= sec θ – tan θ
$\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right.$
and $\left.\cos \theta=\frac{1}{\sec \theta}\right]$
=RHS
Hence Proved
Sol :
Taking LHS $=\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$
$=\sqrt{\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1+\sin \theta}{1+\sin \theta}}$ [multiplying and divide by of 1+ sin θ]
$=\sqrt{\frac{(1)^{2}-(\sin \theta)^{2}}{(1+\sin \theta)^{2}}}$
$=\sqrt{\frac{1-\sin ^{2} \theta}{(1+\sin \theta)^{2}}}$
$=\sqrt{\frac{\cos ^{2} \theta}{(1+\sin \theta)^{2}}}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{\cos \theta}{1+\sin \theta}$
=RHS
Hence Proved
Sol :
Taking LHS $=\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$
[multiplying and divide by conjugate of 1– sinθ in 1st term and 1+sinθ in 2nd term]
$=\sqrt{\frac{1+\sin \theta}{1-\sin \theta} \times \frac{1+\sin \theta}{1+\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}}$
$=\sqrt{\frac{(1+\sin \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}}+\sqrt{\frac{(1-\sin \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}}$
$=\sqrt{\frac{(1+\sin \theta)^{2}}{\left(1-\sin ^{2} \theta\right)}}+\sqrt{\frac{(1-\sin \theta)^{2}}{\left(1-\sin ^{2} \theta\right)}}$
$=\sqrt{\frac{(1+\sin \theta)^{2}}{\cos ^{2} \theta}}+\sqrt{\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}}$ [∵ cos2 θ + sin2 θ = 1]
=$\frac{1+\sin \theta}{\cos \theta}+\frac{1-\sin \theta}{\cos \theta}$
$=\frac{1+\sin \theta+1-\sin \theta}{\cos \theta}$
$=\frac{2}{\cos \theta}$
= 2 sec θ
=RHS
Hence Proved
Sol :
Given : secθ+tanθ=m and sec θ–tanθ=n
To Prove : √mn = 1
Taking LHS = √mn
Putting the value of m and n, we get
$=\sqrt{(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)}$
Using the identity, (a + b) (a – b) = (a2 – b2)
$=\sqrt{\sec ^{2} \theta-\tan ^{2} \theta}$
=√(1) [∵ 1+ tan2 θ = sec2 θ]
=±1
=RHS
Hence Proved
Given: cos θ+sinθ=1
On squaring both the sides, we get
(cos θ +sin θ)2 =(1)2
⇒ cos2 θ + sin2 θ + 2sinθ cos θ = 1
⇒ cos2 θ + sin2 θ = cos2 θ + sin2 θ – 2sinθ cos θ
[∵ cos2 θ + sin2 θ = 1]
⇒ cos2 θ + sin2 θ = (cosθ – sinθ)2
[∵ (a – b)2 = (a2 + b2 – 2ab)]
⇒ 1 = (cos θ – sin θ)2
⇒ (cos θ – sin θ) = ±1
Hence Proved
Given : sin θ + sin2 θ = 1
⇒ sin θ = 1 – sin2 θ
Taking LHS = cos2θ+ cos4θ
= cos2 θ + (cos2 θ)2
= (1– sin2 θ) + (1– sin2 θ)2 …(i)
Putting sin θ = 1 – sin2 θ in Eq. (i), we get
= sin θ + (sin θ)2
= sin θ + sin2 θ
= 1 [Given: sin θ + sin2 θ = 1]
=RHS
Hence Proved
Sol :
To show : $\sin \theta=\frac{x^{2}-1}{x^{2}+1}$
Taking RHS $=\frac{x^{2}-1}{x^{2}+1}$
Given tanθ+secθ=x
$=\frac{(\tan \theta+\sec \theta)^{2}-1}{(\tan \theta+\sec \theta)^{2}+1}$
$=\frac{\tan ^{2} \theta+\sec ^{2} \theta+2 \tan \theta \sec \theta-1}{\tan ^{2} \theta+\sec ^{2} \theta+2 \tan \theta \sec \theta+1}$
$=\frac{\tan ^{2} \theta+\tan ^{2} \theta+2 \tan \theta \sec \theta}{\sec ^{2} \theta-1+\sec ^{2} \theta+2 \tan \theta \sec \theta+1}$ [∵ 1+ tan2 θ = sec2 θ]
$=\frac{2 \tan ^{2} \theta+2 \tan \theta \sec \theta}{2 \sec ^{2} \theta+2 \tan \theta \sec \theta}$
$=\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\frac{\sin \theta}{\cos \theta} \times \frac{1}{\cos \theta}}{\frac{1}{\cos ^{2} \theta}+\frac{\sin \theta}{\cos \theta} \times \frac{1}{\cos \theta}}$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta} \text { and } \cos \theta=\frac{1}{\sec \theta}\right]$
$=\frac{\sin ^{2} \theta+\sin \theta}{1+\sin \theta}$
$=\frac{\sin \theta(\sin \theta+1)}{1+\sin \theta}$
=sin θ
=LHS
Hence Proved
Sol :
Given: sin θ + cos θ = p and sec θ + cosec θ = q
To show q(p2 – 1) = 2p
Taking LHS = q(p2 – 1)
Putting the value of sin θ + cos θ = p and sec θ + cosec θ = q, we get
=(sec θ + cosec θ){( sin θ + cos θ )2 – 1)
=(sec θ + cosec θ){(sin2 θ + cos2 θ + 2sin θ cosθ) – 1)}
[∵ (a + b)2 = (a2 + b2 + 2ab)]
=(sec θ + cosec θ)(1+2sin θ cos θ – 1)
=(sec θ + cosec θ)(2sin θcosθ)
$=\left(\frac{1}{\cos \theta}+\frac{1}{\sin \theta}\right) \times(2 \sin \theta \cos \theta)$ $\left[\because \cos \theta=\frac{1}{\sec \theta} \text { and } \sin \theta=\frac{1}{\cos \theta}\right]$
$=\frac{\sin \theta+\cos \theta}{\cos \theta \sin \theta} \times 2 \sin \theta \cos \theta$
= 2(sin θ +cos θ)
= 2p [ given sin θ + cos θ = p]
=RHS
Hence Proved
Sol :
Given: x cosθ = a and y = a tanθ
⇒$\mathrm{x}=\frac{\mathrm{a}}{\cos \theta}$ and $y=a \tan \theta$
To Prove : x2–y2=a2
Taking LHS = x2–y2
Putting the values of x and y, we get
$=\left(\frac{a}{\cos \theta}\right)^{2}-(a \tan \theta)^{2}$
$=\frac{a^{2}}{\cos ^{2} \theta}-a^{2} \tan ^{2} \theta$
$=\frac{a^{2}}{\cos ^{2} \theta}-a^{2} \frac{\sin ^{2} \theta}{\cos ^{2} \theta}$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
$=\frac{a^{2}-a^{2} \sin ^{2} \theta}{\cos ^{2} \theta}$
$=\frac{a^{2}\left(1-\sin ^{2} \theta\right)}{\cos ^{2} \theta}$
$=\frac{a^{2} \cos ^{2} \theta}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
= a2
= RHS
Hence Proved
Taking LHS = x2 + y2 + z2
Putting the values of x, y and z , we get
=(r cos α sin β)2 + (r sin α sin β)2 + (r cos α)2
= r2 cos2α sin2β + r2 sin2α sin2β + r2 cos2α
Taking common r2 sin2 α , we get
= r2 sin2α (cos2β + sin2 β) + r2cos2 α
= r2 sin2α + r2 cos2 α [∵ cos2 β + sin2 β = 1]
=r2 ( sin2 α + cos2 α)
= r2 [∵ cos2 α + sin2 α = 1]
=RHS
Hence Proved
(ii) $\sin \theta=\frac{1-x^{2}}{1+x^{2}}$
Sol :
(i) Given sec θ – tan θ = x
Taking RHS $=\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}$
Putting the value of x, we get
$=\frac{2(\sec \theta-\tan \theta)}{1+(\sec \theta-\tan \theta)^{2}}$
$=\frac{2(\sec \theta-\tan \theta)}{1+\sec ^{2} \theta+\tan ^{2} \theta-2 \sec \theta \tan \theta}$
$=\frac{2(\sec \theta-\tan \theta)}{\sec ^{2} \theta+\sec ^{2} \theta-2 \sec \theta \tan \theta}$ [∵ 1+ tan2 θ = sec2 θ]
$=\frac{2(\sec \theta-\tan \theta)}{2 \sec \theta(\sec \theta-\tan \theta)}$
$=\frac{1}{\sec \theta}$ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
= cos θ
=RHS
Hence Proved
(ii) Given sec θ – tan θ = x
Taking RHS $=\frac{1-x^{2}}{1+x^{2}}$
Putting the value of x, we get
$=\frac{1-(\sec \theta-\tan \theta)^{2}}{1+(\sec \theta-\tan \theta)^{2}}$
$=\frac{1-\sec ^{2} \theta-\tan ^{2} \theta+2 \sec \theta \tan \theta}{1+\sec ^{2} \theta+\tan ^{2} \theta-2 \sec \theta \tan \theta}$
$=\frac{\left.-\tan ^{2} \theta-\tan ^{2} \theta+2 \sec \theta \tan \theta\right)}{\sec ^{2} \theta+\sec ^{2} \theta-2 \sec \theta \tan \theta}$ [∵ 1+ tan2 θ = sec2 θ]
$=\frac{2 \tan \theta(\sec \theta-\tan \theta)}{2 \sec \theta(\sec \theta-\tan \theta)}$
=$\frac{\sin \theta}{\cos \theta} \times \cos \theta$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
= sin θ
=RHS
Hence Proved
Let
(a cos θ + b sin θ)2 + (a sin θ – b cos θ)2 = a2cos2θ + b2 sin2θ + 2ab cos θ sin θ + a2sin2θ
+ b2 cos2θ – 2ab cos θ sin θ
⇒ c2 + (a sin θ – b cos θ)2 = a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)
⇒ c2 + (a sin θ – b cos θ)2 = a2 + b2
⇒ (a sin θ – b cos θ)2 = a2 + b2 – c2
⇒ (a sin θ – b cos θ) = ±√ (a2 + b2 – c2)
Sol :
Given: 1+sin2θ =3 sin θ cos θ
Divide by cos2 θ to both the sides, we get
⇒$\frac{1}{\cos ^{2} \theta}+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{3 \sin \theta \cos \theta}{\cos ^{2} \theta}$
⇒ sec2 θ + tan2 θ = 3 tan θ
⇒ 1+ tan2 θ+ tan2 θ = 3tan θ
⇒ 2 tan2 θ –3tan θ +1 = 0
Let tanθ = x
⇒ 2x2 – 3x +1 = 0
⇒ 2x2 – 2x – x +1 = 0
⇒ 2x ( x – 1) – 1(x – 1) = 0
⇒ (2x – 1)(x – 1) = 0
Putting each of the factor = 0, we get
⇒ x = 1 or $\dfrac{1}{2}$
And above, we let tan θ = x
⇒$\tan \theta=1$ or $\frac{1}{2}$
Hence Proved
Taking RHS =x2 + y2
Putting the values of x and y, we get
(a cos θ – b sin θ)2 + (a sin θ + b cos θ)2
= a2cos2θ + b2 sin2θ – 2ab cos θ sin θ + a2sin2θ + b2 cos2θ + 2ab cos θ sin θ
= a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)
= a2 + b2 [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Sol :
Taking LHS =x2 – y2
Putting the values of x and y, we get
(a sec θ + b tan θ)2 – (a tan θ + b sec θ)2
= a2 sec2θ + b2 tan2θ + 2ab sec θ tan θ – a2tan2θ – b2 sec2θ – 2ab sec θ tan θ
= a2 (sec2θ – tan2θ) – b2 (sec2θ – tan2θ)
= a2 – b2 [∵ 1+ tan2 θ = sec2 θ]
=RHS
Hence Proved
$\tan \theta=\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{ab}}$
Sol :
Taking (a2 – b2) sin θ + 2ab cos θ = a2 + b2
We know that
$\sin \theta=\frac{2 \tan \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}$ and $\cos \theta=\frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}$
Then, substituting the above values in the given equation, we get
$=\mathrm{a}^{2}-\mathrm{b}^{2} \frac{2 \tan \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}+2 \mathrm{ab} \frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}=\mathrm{a}^{2}+\mathrm{b}^{2}$
Now, substituting,$t=\tan \frac{\theta}{2}$ , we have
$a^{2}-b^{2} \frac{2 t}{1+t^{2}}+2 a b \frac{1-t^{2}}{1+t^{2}}=a^{2}+b^{2}$
⇒ ( a2 – b2)2t – 2ab(1 – t2) = (a2 + b2)(1+t2)
Simplify, we get
(a2 + 2ab + b2)t2 – 2(a2 – b2)t + (a2 –2ab +b2)=0
⇒ (a+b)2 t2 – 2(a2 – b2)t + (a – b)2 = 0
⇒ (a+b)2 t2 –2 (a – b)(a+b)t + (a – b)2 =0
⇒ [(a+b)t – (a – b)]2 = 0 [∵ (a – b)2 = (a2 + b2 – 2ab)]
⇒ [(a+b)t – (a – b)] = 0
⇒ (a+b)t = (a – b)
⇒$ \mathrm{t}=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}$
⇒$ \tan \frac{\theta}{2}=\frac{a-b}{a+b}$
We know that, $\frac{2 t}{1-t^{2}}=\tan \theta$ where $\mathrm{t}=\tan \frac{\theta}{2}$
$\Rightarrow \tan \theta=\frac{2\left(\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}\right)}{1-\left(\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}\right)^{2}}$
$\Rightarrow \tan \theta=\frac{2(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})}{(\mathrm{a}+\mathrm{b})^{2}-(\mathrm{a}-\mathrm{b})^{2}}$
$\Rightarrow \tan \theta=\frac{a^{2}-b^{2}}{2 a b}$
Hence Proved
=RHS
Hence Proved
Question 39
Prove the following identities
$\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\frac{\cos \theta}{1+\sin \theta}$Sol :
Taking LHS $=\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$
$=\sqrt{\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1+\sin \theta}{1+\sin \theta}}$ [multiplying and divide by of 1+ sin θ]
$=\sqrt{\frac{(1)^{2}-(\sin \theta)^{2}}{(1+\sin \theta)^{2}}}$
$=\sqrt{\frac{1-\sin ^{2} \theta}{(1+\sin \theta)^{2}}}$
$=\sqrt{\frac{\cos ^{2} \theta}{(1+\sin \theta)^{2}}}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{\cos \theta}{1+\sin \theta}$
=RHS
Hence Proved
Question 40
Prove the following identities
$\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=2 \sec \theta$Sol :
Taking LHS $=\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$
[multiplying and divide by conjugate of 1– sinθ in 1st term and 1+sinθ in 2nd term]
$=\sqrt{\frac{1+\sin \theta}{1-\sin \theta} \times \frac{1+\sin \theta}{1+\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}}$
$=\sqrt{\frac{(1+\sin \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}}+\sqrt{\frac{(1-\sin \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}}$
$=\sqrt{\frac{(1+\sin \theta)^{2}}{\left(1-\sin ^{2} \theta\right)}}+\sqrt{\frac{(1-\sin \theta)^{2}}{\left(1-\sin ^{2} \theta\right)}}$
$=\sqrt{\frac{(1+\sin \theta)^{2}}{\cos ^{2} \theta}}+\sqrt{\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}}$ [∵ cos2 θ + sin2 θ = 1]
=$\frac{1+\sin \theta}{\cos \theta}+\frac{1-\sin \theta}{\cos \theta}$
$=\frac{1+\sin \theta+1-\sin \theta}{\cos \theta}$
$=\frac{2}{\cos \theta}$
= 2 sec θ
=RHS
Hence Proved
Question 41
If secθ + tanθ=m and sec θ – tanθ = n, then prove that $\sqrt{m n}=1$
Given : secθ+tanθ=m and sec θ–tanθ=n
To Prove : √mn = 1
Taking LHS = √mn
Putting the value of m and n, we get
$=\sqrt{(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)}$
Using the identity, (a + b) (a – b) = (a2 – b2)
$=\sqrt{\sec ^{2} \theta-\tan ^{2} \theta}$
=√(1) [∵ 1+ tan2 θ = sec2 θ]
=±1
=RHS
Hence Proved
Question 42
If cosθ + sinθ = 1, then prove that cosθ – sin θ = ± 1.
Sol :Given: cos θ+sinθ=1
On squaring both the sides, we get
(cos θ +sin θ)2 =(1)2
⇒ cos2 θ + sin2 θ + 2sinθ cos θ = 1
⇒ cos2 θ + sin2 θ = cos2 θ + sin2 θ – 2sinθ cos θ
[∵ cos2 θ + sin2 θ = 1]
⇒ cos2 θ + sin2 θ = (cosθ – sinθ)2
[∵ (a – b)2 = (a2 + b2 – 2ab)]
⇒ 1 = (cos θ – sin θ)2
⇒ (cos θ – sin θ) = ±1
Hence Proved
Question 43
If sinθ + sin2θ = 1, then prove that cos2θ +1 cos4θ = 1
Sol :Given : sin θ + sin2 θ = 1
⇒ sin θ = 1 – sin2 θ
Taking LHS = cos2θ+ cos4θ
= cos2 θ + (cos2 θ)2
= (1– sin2 θ) + (1– sin2 θ)2 …(i)
Putting sin θ = 1 – sin2 θ in Eq. (i), we get
= sin θ + (sin θ)2
= sin θ + sin2 θ
= 1 [Given: sin θ + sin2 θ = 1]
=RHS
Hence Proved
Question 44
If tanθ + secθ = x, show that sinθ =$\frac{x^{2}-1}{x^{2}+1}$
To show : $\sin \theta=\frac{x^{2}-1}{x^{2}+1}$
Taking RHS $=\frac{x^{2}-1}{x^{2}+1}$
Given tanθ+secθ=x
$=\frac{(\tan \theta+\sec \theta)^{2}-1}{(\tan \theta+\sec \theta)^{2}+1}$
$=\frac{\tan ^{2} \theta+\sec ^{2} \theta+2 \tan \theta \sec \theta-1}{\tan ^{2} \theta+\sec ^{2} \theta+2 \tan \theta \sec \theta+1}$
$=\frac{\tan ^{2} \theta+\tan ^{2} \theta+2 \tan \theta \sec \theta}{\sec ^{2} \theta-1+\sec ^{2} \theta+2 \tan \theta \sec \theta+1}$ [∵ 1+ tan2 θ = sec2 θ]
$=\frac{2 \tan ^{2} \theta+2 \tan \theta \sec \theta}{2 \sec ^{2} \theta+2 \tan \theta \sec \theta}$
$=\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\frac{\sin \theta}{\cos \theta} \times \frac{1}{\cos \theta}}{\frac{1}{\cos ^{2} \theta}+\frac{\sin \theta}{\cos \theta} \times \frac{1}{\cos \theta}}$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta} \text { and } \cos \theta=\frac{1}{\sec \theta}\right]$
$=\frac{\sin ^{2} \theta+\sin \theta}{1+\sin \theta}$
$=\frac{\sin \theta(\sin \theta+1)}{1+\sin \theta}$
=sin θ
=LHS
Hence Proved
Question 45
If sinθ + cosθ = p and secθ + cosecθ = q, then show q(p2–1) =2p
Given: sin θ + cos θ = p and sec θ + cosec θ = q
To show q(p2 – 1) = 2p
Taking LHS = q(p2 – 1)
Putting the value of sin θ + cos θ = p and sec θ + cosec θ = q, we get
=(sec θ + cosec θ){( sin θ + cos θ )2 – 1)
=(sec θ + cosec θ){(sin2 θ + cos2 θ + 2sin θ cosθ) – 1)}
[∵ (a + b)2 = (a2 + b2 + 2ab)]
=(sec θ + cosec θ)(1+2sin θ cos θ – 1)
=(sec θ + cosec θ)(2sin θcosθ)
$=\left(\frac{1}{\cos \theta}+\frac{1}{\sin \theta}\right) \times(2 \sin \theta \cos \theta)$ $\left[\because \cos \theta=\frac{1}{\sec \theta} \text { and } \sin \theta=\frac{1}{\cos \theta}\right]$
$=\frac{\sin \theta+\cos \theta}{\cos \theta \sin \theta} \times 2 \sin \theta \cos \theta$
= 2(sin θ +cos θ)
= 2p [ given sin θ + cos θ = p]
=RHS
Hence Proved
Question 46
If x cosθ =a and y = a tanθ, then prove that x2–y2=a2
Given: x cosθ = a and y = a tanθ
⇒$\mathrm{x}=\frac{\mathrm{a}}{\cos \theta}$ and $y=a \tan \theta$
To Prove : x2–y2=a2
Taking LHS = x2–y2
Putting the values of x and y, we get
$=\left(\frac{a}{\cos \theta}\right)^{2}-(a \tan \theta)^{2}$
$=\frac{a^{2}}{\cos ^{2} \theta}-a^{2} \tan ^{2} \theta$
$=\frac{a^{2}}{\cos ^{2} \theta}-a^{2} \frac{\sin ^{2} \theta}{\cos ^{2} \theta}$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
$=\frac{a^{2}-a^{2} \sin ^{2} \theta}{\cos ^{2} \theta}$
$=\frac{a^{2}\left(1-\sin ^{2} \theta\right)}{\cos ^{2} \theta}$
$=\frac{a^{2} \cos ^{2} \theta}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
= a2
= RHS
Hence Proved
Question 47
If x= r cos α sin β, y = r sin α sin β and z = r cos α then prove that x2 +
y2 + z2 = r2.
Sol :Taking LHS = x2 + y2 + z2
Putting the values of x, y and z , we get
=(r cos α sin β)2 + (r sin α sin β)2 + (r cos α)2
= r2 cos2α sin2β + r2 sin2α sin2β + r2 cos2α
Taking common r2 sin2 α , we get
= r2 sin2α (cos2β + sin2 β) + r2cos2 α
= r2 sin2α + r2 cos2 α [∵ cos2 β + sin2 β = 1]
=r2 ( sin2 α + cos2 α)
= r2 [∵ cos2 α + sin2 α = 1]
=RHS
Hence Proved
Question 48
If secθ – tanθ = x, then prove that
(i)$\cos \theta=\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}$(ii) $\sin \theta=\frac{1-x^{2}}{1+x^{2}}$
Sol :
(i) Given sec θ – tan θ = x
Taking RHS $=\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}$
Putting the value of x, we get
$=\frac{2(\sec \theta-\tan \theta)}{1+(\sec \theta-\tan \theta)^{2}}$
$=\frac{2(\sec \theta-\tan \theta)}{1+\sec ^{2} \theta+\tan ^{2} \theta-2 \sec \theta \tan \theta}$
$=\frac{2(\sec \theta-\tan \theta)}{\sec ^{2} \theta+\sec ^{2} \theta-2 \sec \theta \tan \theta}$ [∵ 1+ tan2 θ = sec2 θ]
$=\frac{2(\sec \theta-\tan \theta)}{2 \sec \theta(\sec \theta-\tan \theta)}$
$=\frac{1}{\sec \theta}$ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
= cos θ
=RHS
Hence Proved
(ii) Given sec θ – tan θ = x
Taking RHS $=\frac{1-x^{2}}{1+x^{2}}$
Putting the value of x, we get
$=\frac{1-(\sec \theta-\tan \theta)^{2}}{1+(\sec \theta-\tan \theta)^{2}}$
$=\frac{1-\sec ^{2} \theta-\tan ^{2} \theta+2 \sec \theta \tan \theta}{1+\sec ^{2} \theta+\tan ^{2} \theta-2 \sec \theta \tan \theta}$
$=\frac{\left.-\tan ^{2} \theta-\tan ^{2} \theta+2 \sec \theta \tan \theta\right)}{\sec ^{2} \theta+\sec ^{2} \theta-2 \sec \theta \tan \theta}$ [∵ 1+ tan2 θ = sec2 θ]
$=\frac{2 \tan \theta(\sec \theta-\tan \theta)}{2 \sec \theta(\sec \theta-\tan \theta)}$
=$\frac{\sin \theta}{\cos \theta} \times \cos \theta$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
= sin θ
=RHS
Hence Proved
Question 49
If a cos θ + b sinθ = c, then prove that a sinθ – b cos θ =
± $\sqrt{a^{2}+b^{2}-c^{2}}$
Sol :Let
(a cos θ + b sin θ)2 + (a sin θ – b cos θ)2 = a2cos2θ + b2 sin2θ + 2ab cos θ sin θ + a2sin2θ
+ b2 cos2θ – 2ab cos θ sin θ
⇒ c2 + (a sin θ – b cos θ)2 = a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)
⇒ c2 + (a sin θ – b cos θ)2 = a2 + b2
⇒ (a sin θ – b cos θ)2 = a2 + b2 – c2
⇒ (a sin θ – b cos θ) = ±√ (a2 + b2 – c2)
Question 50
If 1+sin2θ = 3 sinθ . cosθ, then prove that tan θ = 1 or 1/2.
Given: 1+sin2θ =3 sin θ cos θ
Divide by cos2 θ to both the sides, we get
⇒$\frac{1}{\cos ^{2} \theta}+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{3 \sin \theta \cos \theta}{\cos ^{2} \theta}$
⇒ sec2 θ + tan2 θ = 3 tan θ
⇒ 1+ tan2 θ+ tan2 θ = 3tan θ
⇒ 2 tan2 θ –3tan θ +1 = 0
Let tanθ = x
⇒ 2x2 – 3x +1 = 0
⇒ 2x2 – 2x – x +1 = 0
⇒ 2x ( x – 1) – 1(x – 1) = 0
⇒ (2x – 1)(x – 1) = 0
Putting each of the factor = 0, we get
⇒ x = 1 or $\dfrac{1}{2}$
And above, we let tan θ = x
⇒$\tan \theta=1$ or $\frac{1}{2}$
Hence Proved
Question 51
If a cos θ – b sinθ = x and a sinθ + b cosθ = y that a2 + b2 =
x2 + y2.
Sol :Taking RHS =x2 + y2
Putting the values of x and y, we get
(a cos θ – b sin θ)2 + (a sin θ + b cos θ)2
= a2cos2θ + b2 sin2θ – 2ab cos θ sin θ + a2sin2θ + b2 cos2θ + 2ab cos θ sin θ
= a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)
= a2 + b2 [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Question 52
If x = a sec θ + b tan θ a and y = a tan θ + b sec θ, then prove that x2 –
y2 = a2 – b2.
Taking LHS =x2 – y2
Putting the values of x and y, we get
(a sec θ + b tan θ)2 – (a tan θ + b sec θ)2
= a2 sec2θ + b2 tan2θ + 2ab sec θ tan θ – a2tan2θ – b2 sec2θ – 2ab sec θ tan θ
= a2 (sec2θ – tan2θ) – b2 (sec2θ – tan2θ)
= a2 – b2 [∵ 1+ tan2 θ = sec2 θ]
=RHS
Hence Proved
Question 53
If (a2 – b2) sin θ + 2ab cosθ = a2 + b2, then prove
that .
Sol :
Taking (a2 – b2) sin θ + 2ab cos θ = a2 + b2
We know that
$\sin \theta=\frac{2 \tan \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}$ and $\cos \theta=\frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}$
Then, substituting the above values in the given equation, we get
$=\mathrm{a}^{2}-\mathrm{b}^{2} \frac{2 \tan \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}+2 \mathrm{ab} \frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}=\mathrm{a}^{2}+\mathrm{b}^{2}$
Now, substituting,$t=\tan \frac{\theta}{2}$ , we have
$a^{2}-b^{2} \frac{2 t}{1+t^{2}}+2 a b \frac{1-t^{2}}{1+t^{2}}=a^{2}+b^{2}$
⇒ ( a2 – b2)2t – 2ab(1 – t2) = (a2 + b2)(1+t2)
Simplify, we get
(a2 + 2ab + b2)t2 – 2(a2 – b2)t + (a2 –2ab +b2)=0
⇒ (a+b)2 t2 – 2(a2 – b2)t + (a – b)2 = 0
⇒ (a+b)2 t2 –2 (a – b)(a+b)t + (a – b)2 =0
⇒ [(a+b)t – (a – b)]2 = 0 [∵ (a – b)2 = (a2 + b2 – 2ab)]
⇒ [(a+b)t – (a – b)] = 0
⇒ (a+b)t = (a – b)
⇒$ \mathrm{t}=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}$
⇒$ \tan \frac{\theta}{2}=\frac{a-b}{a+b}$
We know that, $\frac{2 t}{1-t^{2}}=\tan \theta$ where $\mathrm{t}=\tan \frac{\theta}{2}$
$\Rightarrow \tan \theta=\frac{2\left(\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}\right)}{1-\left(\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}\right)^{2}}$
$\Rightarrow \tan \theta=\frac{2(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})}{(\mathrm{a}+\mathrm{b})^{2}-(\mathrm{a}-\mathrm{b})^{2}}$
$\Rightarrow \tan \theta=\frac{a^{2}-b^{2}}{2 a b}$
Hence Proved
No comments:
Post a Comment