KC Sinha Mathematics Solution Class 10 Chapter 4 Trigonometric Ratios and Identities Exercise 4.4


Exercise 4.1
Exercise 4.2
Exercise 4.3
Exercise 4.4

Exercise 4.4


Question 1

Fill in the blanks
(i) sin2 θ cosec2 θ = ……..
(ii) 1 + tan2 θ = ……
(iii) Reciprocal sin θ. cot θ = ……
(iv) 1–.......= cos2θ
(v) $\tan A=\frac{\cdots \cdots \cdot}{\cos A}$
(vi) $\ldots \ldots=\frac{\cos A}{\sin A}$
(vii) cos θ is reciprocal of .........
(viii) Reciprocal of sin θ is.........
(ix) Value of sin θ in terms of cos θ is
(x) Value of cos θ in terms of sin θ is
Sol :
(i) Given: sin2 θ cosec2 θ
$\Rightarrow \sin ^{2} \theta \times \frac{1}{\sin ^{2} \theta}$ $\left[\because \sin \theta=\frac{1}{\csc \theta}\right]$
= 1

(ii) Given: 1 + tan2 θ
$=1+\left(\frac{\sin \theta}{\cos \theta}\right)^{2}$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
$=1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}$[∵ cos2 θ + sin2 θ = 1]
$=\frac{1}{\cos ^{2} \theta}$
= sec2 θ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$

(iii) Given : sin θ cot θ
Firstly, we simplify the given trigonometry
$=\sin \theta \times \frac{\cos \theta}{\sin \theta}$ $\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right]$
= cos θ
Now, the reciprocal of cos θ is
$=\frac{1}{\cos \theta}$
=sec θ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$

(iv) Given: 1 – x = cos2θ
Subtracting 1 to both the sides, we get
1 – x –1 = cos2θ – 1
⇒ –x = – sin2θ
⇒ x =sin2 θ

(v) $\tan A=\frac{\sin A}{\cos A}$

(vi) $\cot A=\frac{\cos A}{\sin A}$

(vii) $\cos \theta=\frac{1}{\sec \theta}$

(viii) $\sin \theta=\frac{1}{\cos \theta}$

(ix) We know that
cos2 θ + sin2 θ = 1
⇒ sin2 θ = 1 – cos2 θ
⇒ sin θ = √(1 – cos2 θ)
(x) We know that
cos2 θ + sin2 θ = 1
⇒ cos 2 θ = 1 – sin2 θ
⇒ cos θ = √(1 – sin2 θ)

Question 2

If sin θ= p and cos θ = q, what is the relation between p and q ?
Sol :
We know that,
cos2 θ + sin2 θ = 1 …(i)
Given : sin θ = p and cos θ = q
Putting the values of sin θ and cos θ in eq. (i), we get
(q)2 + (p)2 =1
⇒ p2 + q2 =1

Question 3

If cos A = x, express sin A in terms of x
Sol :
We know that
cos2 θ + sin2 θ = 1
⇒ sin2 θ = 1 – cos2 θ
⇒ sin θ = √(1 – cos2 θ)
And Given that cos θ = x
⇒ sin θ = √(1– x2)

Question 4

If x cos θ = 1 and y sin θ = 1 find the value of tan θ.
Sol :
Given x cosθ = 1 and y sinθ = 1
$\Rightarrow \cos \theta=\frac{1}{x}$ and $\sin \theta=\frac{1}{\mathrm{y}}$

Now, we know that
$\tan \theta=\frac{\sin \theta}{\cos \theta}$

Putting the value of sin θ and cos θ, we get
$\tan \theta=\frac{\frac{1}{y}}{\frac{1}{x}}$
$\Rightarrow \tan \theta=\frac{x}{y}$

Question 5

If cos40o = p, then write the value of sin 40o in terms of p.
Sol :
We know that
cos2 θ + sin2 θ = 1
⇒ cos2 40° + sin2 40° = 1
⇒ sin2 40° = 1 – cos2 40°
⇒ sin 40° = √(1 – cos2 40°)
And Given that cos 40° = p
⇒ sin 40° = √(1– p2)

Question 6

If sin 77° = x, then write the value of cos 77o in terms of x.
Sol :
We know that
cos2 θ + sin2 θ = 1
⇒ cos2 77° + sin2 77° = 1
⇒ cos 2 77° = 1 – sin2 77°
⇒ cos 77° = √(1 – sin2 77°)
And Given that sin 77° = x
⇒ cos 77° = √(1 – x2 )

Question 7

If cos55° = x2, then write the value of sin 55o in terms of x.
Sol :
We know that
cos2 θ + sin2 θ = 1
⇒ cos2 55° + sin2 55° = 1
⇒ sin2 55° = 1 – cos2 55°
⇒ sin 55° = √(1 – cos2 55°)
And Given that cos 55° = x2
⇒ sin 55° = √{1– (x2)2}
⇒ sin 55° = √(1 – x4)

Question 8

If, sin 50° = α then write the value of cos 50° in terms of α.
Sol :
We know that
cos2 θ + sin2 θ = 1
⇒ cos2 50° + sin2 50° = 1
⇒ cos 2 50° = 1 – sin2 50°
⇒ cos 50° = √(1 – sin2 50°)
And Given that sin 50° = a
⇒ cos 50° = √(1 – a2 )

Question 9

If x cos A = 1 and tan A = y, then what is the value of x2 – y2.
Sol :
Given x cos A = 1 and tan A =y
$\Rightarrow \mathrm{x}=\frac{1}{\cos \mathrm{A}}$ and $\frac{\sin A}{\cos A}=y$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$ 
To find: x2 – y2

Putting the values of x and y , we get
$\left(\frac{1}{\cos A}\right)^{2}-\left(\frac{\sin A}{\cos A}\right)^{2}$
$=\frac{1}{\cos ^{2} A}-\frac{\sin ^{2} A}{\cos ^{2} A}$
$=\frac{1-\sin ^{2} A}{\cos ^{2} A}$
$=\frac{\cos ^{2} A}{\cos ^{2} A}$ [∵ cos2 θ + sin2 θ = 1]
= 1

Question 10

Prove the followings identities:
(1 – sin θ)(1 + sin θ) = cso2 θ
Sol :
Taking LHS = (1 – sinθ)(1+ sinθ)
Using identity , (a + b) (a – b) = (a2 – b2) , we get
= (1)2 – (sinθ)2
= 1 – sin2 θ
= cos2 θ [∵ cos2 θ + sin2 θ = 1]
= RHS
Hence Proved

Question 11

Prove the followings identities:
(1 + cos θ)(1 – cos θ) = sin2θ
Sol :
Taking LHS =(1 – cosθ)(1+ cosθ)
Using identity , (a + b) (a – b) = (a2 – b2) , we get
= (1)2 – (cosθ)2
= 1 – cos2 θ
= sin2 θ [∵ cos2 θ + sin2 θ = 1]
= RHS
Hence Proved

Question 12

Prove the followings identities:
$\frac{(1-\cos \theta)(1+\cos \theta)}{(1-\sin \theta)(1+\sin \theta)}=\tan ^{2} \theta$
Sol :
Taking LHS $\frac{(1-\cos \theta)(1+\cos \theta)}{(1-\sin \theta)(1+\sin \theta)}$
$=\frac{(1)^{2}-(\cos \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}$ [Using identity , (a + b) (a – b) = (a2 – b2)]
$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
= tan2 θ  $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
= RHS
Hence Proved

Question 13

Prove the followings identities:
$\frac{1}{\sec \theta+\tan \theta}=\sec \theta-\tan \theta$
Sol :
Taking LHS $=\frac{1}{\sec \theta+\tan \theta}$
Multiplying and divide by the conjugate of sec θ + tan θ
$=\frac{1}{\sec \theta+\tan \theta} \times \frac{\sec \theta-\tan \theta}{\sec \theta-\tan \theta}$
$=\frac{\sec \theta-\tan \theta}{\sec ^{2} \theta-\tan ^{2} \theta}$ [Using identity , (a + b) (a – b) = (a2 – b2)]
= sec θ – tan θ [∵ 1+ tan2 θ = sec2 θ ]
= RHS
Hence Proved

Question 14 A 

Prove the following identities :
sinθ. cotθ = cos θ
Sol :
Taking LHS = sin θ cot θ
$=\sin \theta \times \frac{\cos \theta}{\sin \theta}\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right]$
= cos θ
=RHS
Hence Proved

Question 14 B 

Prove the following identities :
sin2 θ(1+ cot2 θ) = 1
Sol :
Taking LHS = sin2 θ(1+ cot2 θ)
= sin2 θ (cosec2 θ) [∵ cot2 θ +1= cosec2 θ ]
$=\sin ^{2} \theta \times \frac{1}{\sin ^{2} \theta}$ $\left[\because \sin \theta=\frac{1}{\operatorname{cscec} \theta}\right]$
= 1
=RHS
Hence Proved

Question 14 C 

Prove the following identities :
cos2 A (tan2 A+1) = 1
Sol :
Taking LHS = cos2 A (tan2 A+1)
= cos2 θ (sec2 θ) [∵ 1+ tan2 θ = sec2 θ ]
$=\cos ^{2} \theta \times \frac{1}{\cos ^{2} \theta}$ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
= 1
=RHS
Hence Proved

Question 14 D 

Prove the following identities :
tan4θ + tan2θ = sec4θ – sec2θ
Sol :
Taking LHS = tan4 θ + tan2 θ
= (tan2 θ)2 + tan2 θ
= ( sec2 θ – 1)2 + (sec2 θ – 1) [∵ 1+ tan2 θ = sec2 θ ]
= sec4 θ + 1 – 2 sec2 θ + sec2 θ – 1 [∵ (a – b)2 = (a2 + b2 – 2ab)]
= sec4 θ – sec2 θ
=RHS
Hence Proved

Question 14 E 

Prove the following identities :
$\frac{\left(1+\tan ^{2} \theta\right) \sin ^{2} \theta}{\tan \theta}=\tan \theta$
Sol :
Taking LHS $=\frac{\left(1+\tan ^{2} \theta\right) \sin ^{2} \theta}{\tan \theta}$
$=\frac{\left(\sec ^{2} \theta\right) \sin ^{2} \theta}{\frac{\sin \theta}{\cos \theta}}$ [∵ 1+ tan2 θ = sec2 θ]
$=\frac{1 \times \sin \theta \times \cos \theta}{\cos ^{2} \theta}$ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
$=\frac{\sin \theta}{\cos \theta}$
= tan θ
=RHS
Hence Proved

Question 14 F 

Prove the following identities :
$\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+1=\frac{\tan ^{2} \theta}{\sin ^{2} \theta}$
Sol :
Taking LHS$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+1$
$=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1}{\cos ^{2} \theta}$
= sec2θ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$

Now, RHS $=\frac{\tan ^{2} \theta}{\sin ^{2} \theta}$
$=\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\sin ^{2} \theta}$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$

$=\frac{\sin ^{2} \theta}{\sin ^{2} \theta \times \cos ^{2} \theta}$

$=\frac{1}{\cos ^{2} \theta}$
= sec2θ  $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
∴ LHS = RHS
Hence Proved

Question 14 G 

Prove the following identities :
$\frac{3-4 \sin ^{2} \theta}{\cos ^{2} \theta}=3-\tan ^{2} \theta$
Sol :
Taking LHS $=\frac{3-4 \sin ^{2} \theta}{\cos ^{2} \theta}$
$=\frac{3}{\cos ^{2} \theta}-\frac{4 \sin ^{2} \theta}{\cos ^{2} \theta}$
= 3 sec2 θ – 4 tan2 θ
We know that,
1+ tan2 θ = sec2 θ
= 3(1+ tan2 θ) – 4 tan2 θ
= 3 + 3 tan2 θ – 4 tan2 θ
= 3 – tan2 θ
=RHS
Hence Proved

Question 14 H 

Prove the following identities :
(1+ tan2 θ) cos θ. sin θ = tan θ
Sol :
Taking LHS = (1+ tan2 θ) cos θ sin θ
= (sec2 θ) cos θ sin θ [∵ 1+ tan2 θ = sec2 θ]
$=\frac{1}{\cos ^{2} \theta} \times \cos \theta \times \sin \theta$ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$
$=\frac{\sin \theta}{\cos \theta}$
= tan θ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
=RHS
Hence Proved

Question 14 I 

Prove the following identities :
sin2θ – cos2 ϕ = sin2ϕ – cos2θ
Sol :
Taking LHS = sin2 θ – cos2 φ
=( 1 – cos2 θ) – (1 – sin2 φ) [∵ cos2 θ + sin2 θ = 1] & [∵ cos2 φ + sin2 φ = 1]
= 1 – cos2 θ – 1 + sin2 φ
= sin2 φ – cos2 θ
=RHS
Hence Proved

Question 14 J 

Prove the following identities :
$\frac{1-\tan ^{2} \theta}{\cot ^{2} \theta-1}=\tan ^{2} \theta$
Sol :
Taking LHS $=\frac{1-\tan ^{2} \theta}{\cot ^{2} \theta-1}$
$=\frac{1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2} \theta}{\sin ^{2} \theta}-1}$
$=\frac{\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin ^{2} \theta}}$
$=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta} \times \frac{\sin ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$
= tan2 θ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
=RHS
Hence Proved

Question 15 A 

Prove the following identities :
(1 – cosθ)(1+ cosθ)(1+ cot2 θ) = 1
Sol :
Taking LHS = (1 – cosθ)(1+ cosθ)(1+ cot2 θ)
Using identity , (a + b) (a – b) = (a2 – b2) in first two terms , we get
= (1)2 – (cosθ)2 (cosec2 θ) [∵ cot2 θ +1= cosec2 θ]
= (1 – cos2 θ) (cosec2 θ)
= (sin2 θ) (cosec2 θ) [∵ cos2 θ + sin2 θ = 1]
$=\sin ^{2} \theta \times \frac{1}{\sin ^{2} \theta}$ $\left[\because \sin \theta=\frac{1}{\csc \theta}\right]$
=1
= RHS
Hence Proved

Question 15 B 

Prove the following identities :
$\frac{(1+\sin \theta)^{2}+(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}=\frac{1+\sin ^{2} \theta}{1-\sin ^{2} \theta}$
Sol :
Taking LHS $=\frac{(1+\sin \theta)^{2}(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}$
$=\frac{1+\sin ^{2} \theta+2 \sin \theta+1+\sin ^{2} \theta-2 \sin \theta}{2 \cos ^{2} \theta}$
[∵ (a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)]
$=\frac{2+2 \sin ^{2} \theta}{2 \cos ^{2} \theta}$
$=\frac{2\left(1+\sin ^{2} \theta\right)}{2\left(1-\sin ^{2} \theta\right)}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1+\sin ^{2} \theta}{1-\sin ^{2} \theta}$
=RHS
Hence Proved

Question 15 C 

Prove the following identities :
$\frac{\cos ^{2} \theta(1-\cos \theta)}{\sin ^{2} \theta(1-\sin \theta)}=\frac{1+\sin \theta}{1+\cos \theta}$
Sol :
Taking LHS $=\frac{\cos ^{2} \theta(1-\cos \theta)}{\sin ^{2} \theta(1-\sin \theta)}$

Multiplying and divide by the conjugate of (1 – sinθ), we get
$=\frac{\cos ^{2} \theta(1-\cos \theta)}{\sin ^{2} \theta(1-\sin \theta)} \times \frac{(1+\sin \theta)}{(1+\sin \theta)}$
$=\frac{\cos ^{2} \theta(1-\cos \theta)(1+\sin \theta)}{\sin ^{2} \theta\left[(1)^{2}-(\sin \theta)^{2}\right]}$
$=\frac{\cos ^{2} \theta(1-\cos \theta)(1+\sin \theta)}{\sin ^{2} \theta \times \cos ^{2} \theta}$
$=\frac{(1-\cos \theta)(1+\sin \theta)}{\sin ^{2} \theta}$

Now, multiply and divide by conjugate of 1 – cos θ, we get
$=\frac{(1-\cos \theta)(1+\sin \theta)}{\sin ^{2} \theta} \times \frac{(1+\cos \theta)}{(1+\cos \theta)}$
$=\frac{\left(1^{2}-\cos ^{2} \theta\right)(1+\sin \theta)}{\sin ^{2} \theta(1+\cos \theta)}$
$=\frac{\sin ^{2} \theta(1+\sin \theta)}{\sin ^{2} \theta(1+\cos \theta)}$
$=\frac{1+\sin \theta}{1+\cos \theta}$
=RHS
Hence Proved

Question 15 D 

Prove the following identities :
(sin θ – cos θ)2 = 1 – 2 sinθ . cos θ
Sol :
Taking LHS = (sin θ – cos θ)2
Using the identity,(a – b)2 = (a2 + b2 – 2ab)
= sin2 θ + cos2 θ – 2sin θ cos θ
= 1 – 2sin θ cos θ [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved

Question 15 E 

Prove the following identities :
(sin θ + cos θ)2 + (sin θ – cos θ)2 = 2
Sol :
Taking LHS = (sin θ + cos θ)2 + (sin θ – cos θ)2
Using the identity,(a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)
= sin2 θ + cos2 θ + 2sin θ cos θ + sin2 θ + cos2 θ – 2sin θ cos θ
= 1 +1 [∵ cos2 θ + sin2 θ = 1]
= 2
=RHS
Hence Proved

Question 15 F 

Prove the following identities :
(asin θ + bcos θ)2 + (acos θ – bsin θ)2 = a2 + b2
Sol :
Taking LHS = (asin θ + bcos θ)2 + (acos θ – bsin θ )2
Using the identity,(a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)
= a2 sin2 θ + b2 cos2 θ + 2 ab sin θ cos θ + a2 cos2 θ + b2 sin2 θ – 2 ab sin θ cos θ
= a2 sin2 θ+ a2 cos2 θ + b2 sin2 θ + b2 cos2 θ
= a2 (sin2 θ + cos2 θ) + b2 (sin2 θ + cos2 θ)
= a2 + b2 [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved

Question 15 G 

Prove the following identities :
cos4 A + sin4 A + 2 sin2 A. cos2 A = 1
Sol :
Taking LHS = cos4 A + sin4 A + 2 sin2 A cos2 A
Using the identity,(a + b)2 = (a2 + b2 + 2ab)
Here, a = cos2 A and b = sin2 A
= ( cos2 A + sin2 A) [∵ cos2 θ + sin2 θ = 1]
= 1

Question 15 H 

Prove the following identities :
sin4 A – cos4 A = 2 sin2 A – 1 = 1 – 2 cos2 A = sin2 A – cos2 A
Sol :
Given:
$\begin{matrix}\sin ^{4} A-\cos ^{4} A&=2 \sin ^{2} A-1&=1-2 \cos ^{2} A&=\sin ^{2} A-\cos ^{2} A\\ \text{I}&\text{II}&\text{III}&\text{IV}\end{matrix}$
Taking I term
= sin4 A – cos4 A → I term
= (sin2 A)2 – (cos2 A)2
= (sin2 A – cos2 A)(sin2 A+ cos2 A )
[∵ (a2 – b2) = (a + b) (a – b)]
= (sin2 A – cos2 A)(1) [∵ cos2 θ + sin2 θ = 1]
= (sin2 A – cos2 A) …(i) → IV term
From Eq. (i)
= {sin2 A – (1 – sin2 A)} [∵ cos2 θ + sin2 θ = 1]
= sin2 A – 1 + sin2 A
= 2 sin2 A – 1 → II term
Again, From Eq. (i)
= {(1 – cos2 A) – cos2 A } [∵ cos2 θ + sin2 θ = 1]
=1 – 2 cos2 A → III term
Hence, I = II = III = IV
Hence Proved

Question 15 I 

Prove the following identities :
cos4 θ – sin4 θ = cos2 θ – sin2 θ = 2 cos2 θ – 1
Sol :
Given:
$\begin{matrix}\cos ^{4} \theta-\sin ^{4} \theta&=\cos ^{2} \theta-\sin ^{2} \theta&=2 \cos ^{2} \theta-1\\ \text{I}&\text{II}&\text{III}\end{matrix}$

Taking I term
= cos4 θ – sin4 θ → I term
= (cos2 θ)2 – (sin2 θ)2
= (cos2 θ – sin2 θ)(cos2 θ+ sin2 θ )
[∵ (a2 – b2) = (a + b) (a – b)]
= (cos2 θ – sin2 θ) (1) [∵ cos2 θ + sin2 θ = 1]
= (cos2 θ – sin2 θ) …(i) → II term
From Eq. (i)
= {cos2 θ – (1 – cos2 θ)} [∵ cos2 θ + sin2 θ = 1]
= 2 cos2 θ – 1 → III term
Hence, I = II = III
Hence Proved

Question 15 J 

Prove the following identities :
2 cos2 θ – cos4 θ + sin4 θ = 1
Sol :
Taking LHS = 2 cos2 θ – cos4 θ + sin4 θ
= 2 cos2 θ – (cos4 θ – sin4 θ)
= 2 cos2 θ – [(cos2 θ)2 – (sin2 θ)2]
Using identity, (a2 – b2) = (a + b) (a – b)
= 2 cos2 θ – [(cos2 θ – sin2 θ)(cos2 θ+ sin2 θ )]
= 2 cos2 θ – [(cos2 θ – sin2 θ)(1)] [∵ cos2 θ + sin2 θ = 1]
=2 cos2 θ – cos2 θ + sin2 θ
= cos2 θ + sin2 θ
= 1 [∵ cos2 θ + sin2 θ = 1]
= RHS
Hence Proved

Question 15 K 

Prove the following identities :
1 – 2 cos2 θ + cos4 θ = sin4θ
Sol :
Taking LHS = 1 – 2 cos2 θ + cos4 θ
We know that,
cos2 θ + sin2 θ = 1
= 1– 2 cos2 θ + (cos2 θ)2
= 1 – 2 cos2 θ + (1 – sin2 θ)2
= 1 – 2 cos2 θ +1 + sin4 θ – 2sin2θ
= 2 – 2(cos2 θ + sin2θ) + sin4 θ
= 2 – 2(1) + sin4 θ
= sin4 θ
=RHS
Hence Proved

Question 15 L 

Prove the following identities :
1 – 2 sin2 θ + sin4 θ = cos4θ
Sol :
Taking LHS = 1 – 2 sin2 θ + sin4 θ
We know that,
cos2 θ + sin2 θ = 1
= 1– 2 sin2 θ + (sin2 θ)2
= 1 – 2 sin2 θ + (1 – cos2 θ)2
= 1 – 2 sin2 θ +1 + cos4 θ – 2cos2θ
= 2 – 2(cos2 θ + sin2θ) + cos4 θ
= 2 – 2(1) + cos4 θ
= cos4 θ
=RHS
Hence Proved

Question 16 A 

Prove that the following identities :
sec2θ + cosec2θ = sec2θ.cosec2θ
Sol :
Taking LHS = sec2 θ + cosec2 θ
$=\frac{1}{\cos ^{2} \theta}+\frac{1}{\sin ^{2} \theta}$ $\because\left[\cos \theta=\frac{1}{\sec \theta}\right]$ and $\left[\sin \theta=\frac{1}{\csc \theta}\right]$
$=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta \sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1}{\cos ^{2} \theta \sin ^{2} \theta}$
= sec2 θ × cosec2 θ $\because\left[\cos \theta=\frac{1}{\sec \theta}\right]$ and $\left[\sin \theta=\frac{1}{\csc \theta}\right]$
=RHS
Hence Proved

Question 16 B 

Prove that the following identities :
$\frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta=\operatorname{cosec} \theta$
Sol :
Taking LHS $=\frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta}$
$=\frac{1}{\sin \theta}$ [∵ cos2 θ + sin2 θ = 1]
= cosec θ
=RHS
Hence Proved

Question 16 C 

Prove that the following identities :
cotθ + tan θ = cosec θ . sec θ
Sol :
Taking LHS = cot θ + tan θ
$=\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}$
$\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right]$ and $\left[\tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos \theta \sin \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1}{\cos \theta \sin \theta}$
= cosec θ sec θ $\because\left[\cos \theta=\frac{1}{\sec \theta}\right]$ and $\left[\sin \theta=\frac{1}{\csc \theta}\right]$
=RHS
Hence Proved

Question 17 

Prove that the following identities :
$\frac{1-\sin \theta}{1+\sin \theta}=\left(\frac{1-\sin \theta}{\cos \theta}\right)^{2}$
Sol :
Taking LHS $=\frac{1-\sin \theta}{1+\sin \theta}$

Multiplying and divide by the conjugate of 1 + sin θ , we get
$=\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}$
$=\frac{(1-\sin \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}$
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
$=\frac{(1-\sin \theta)^{2}}{1-\sin ^{2} \theta}$
$=\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\left(\frac{1-\sin \theta}{\cos \theta}\right)^{2}$
=RHS
Hence Proved

Question 18 

Prove that the following identities :
$\frac{1-\cos \theta}{1+\cos \theta}=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$
Sol :
Taking LHS $=\frac{1-\cos \theta}{1+\cos \theta}$

Multiplying and divide by the conjugate of 1 + cos θ , we get
$=\frac{1-\cos \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}$
$=\frac{(1-\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}$
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
$=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}$
$=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$
=RHS
Hence Proved

Question 19 

Prove that the following identities :
$\frac{1-\cos \theta}{1+\cos \theta}=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$
Sol :
Taking LHS $=\frac{1-\cos \theta}{1+\cos \theta}$

Multiplying and divide by the conjugate of 1 + cos θ , we get
$=\frac{1-\cos \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}$
$=\frac{(1-\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}$
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
$=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}$
$=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$
=RHS
Hence Proved

Question 20 

Prove that the following identities :
$\frac{\cos \theta}{1+\sin \theta}=\frac{1-\sin \theta}{\cos \theta}$
Sol :
Taking LHS $=\frac{\cos \theta}{1+\sin \theta}$

Multiplying and divide by the conjugate of 1 + sin θ , we get
$=\frac{\cos \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}$
$=\frac{\cos \theta(1-\sin \theta)}{(1)^{2}-(\sin \theta)^{2}}$ [∵ (a + b) (a – b) = (a2 – b2)]
$=\frac{\cos \theta(1-\sin \theta)}{1-\sin ^{2} \theta}$
$=\frac{\cos \theta(1-\sin \theta)}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1-\sin \theta}{\cos \theta}$
=RHS
Hence Proved

Question 21 

Prove that the following identities :
(sin8θ – cos8θ) = (sin2θ – cos2θ)(1 – 2sin2θ .cos2θ)
Sol :
Taking LHS
= sin8 θ – cos8 θ
= (sin4 θ)2 – (cos4 θ)2
= (sin4 θ – cos4 θ)(sin4 θ+ cos4 θ )
[∵ (a2 – b2) = (a + b) (a – b)]
= {(sin2 θ)2 – (cos2 θ)2}{(sin2 θ)2 + (cos2 θ)2}
= (sin2 θ + cos2 θ) (sin2 θ – cos2 θ) [(sin2 θ + cos2 θ) – 2 sin2 θ cos2 θ]
[ ∵ (a2 + b2) = (a +b)2 – 2ab]
= (1)[ sin2 θ –cos2 θ][(1) – 2 sin2 θ cos2 θ]
= (sin2 θ – cos2 θ)(1 – 2 sin2 θ cos2 θ)
=RHS
Hence Proved

Question 22 

Prove that the following identities :
2(sin6 θ – cos6 θ) – 3(sin4 θ + cos4 θ ) + (sin2 θ + cos2 θ)
Sol :
Taking LHS
= 2(sin6 θ – cos6 θ) – 3(sin4 θ+ cos4 θ ) + (sin2 θ + cos2 θ)
= 2[(sin2 θ)3 – (cos2 θ)3 ] – 3[(sin2 θ)2 + (cos2 θ)2 ]+1 [∵ cos2 θ + sin2 θ = 1]
Now, we use these identities, (a3 – b3)= (a + b)3 – 3ab(a+b) and (a2 + b2) = (a +b)2 – 2ab]
= 2[(sin2 θ + cos2 θ)3 – 3sin2θ cos2θ (sin2 θ+ cos2 θ)] –3[(sin2 θ + cos2 θ) – 2 sin2 θ cos2 θ]+ 1
=2[(1) – 3sin2θ cos2θ (1)] – 3[(1) – 2 sin2 θ cos2 θ] + 1 [∵ cos2 θ + sin2 θ = 1]
=2(1 – 3 sin2 θ cos2 θ )– 3 + 6sin2 θ cos2 θ+ 1
= 2– 6sin2θ cos2θ – 2 + 6sin2 θ cos2 θ
=0
=RHS
Hence Proved

Question 23 

Prove the following identities
$\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}=\sin A+\cos A$
Sol :
Taking LHS $=\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}$
$=\frac{\cos A}{1-\frac{\sin A}{\cos A}}+\frac{\sin A}{1-\frac{\cos A}{\sin A}}$
$\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right.$ and $\left.\cot \theta=\frac{\cos \theta}{\sin \theta}\right]$
$=\frac{\cos A}{\frac{\cos A-\sin A}{\cos A}}+\frac{\sin A}{\frac{\sin A-\cos A}{\sin A}}$
$=\frac{\cos ^{2} A}{\cos A-\sin A}+\frac{\sin ^{2} A}{\sin A-\cos A}$
$=\frac{\cos ^{2} A-\sin ^{2} A}{\cos A-\sin A}$

Using the identity, (a2 – b2)= (a + b) (a – b)
$=\frac{(\cos A-\sin A)(\cos A+\sin A)}{(\cos A-\sin A)}$
= sin A +cos A
=RHS
Hence Proved

Question 24 

Prove the following identities
$\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=\frac{2}{\sin \theta}$
Sol :
Taking LHS $=\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}$
$=\frac{\sin ^{2} \theta+(1+\cos \theta)^{2}}{(1+\cos \theta)(\sin \theta)}$
$=\frac{\sin ^{2} \theta+1+\cos ^{2} \theta+2 \cos \theta}{(1+\cos \theta)(\sin \theta)}$
$=\frac{2+2 \cos \theta}{(1+\operatorname{ses} \theta)(\sin \theta)}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{2(1+\cos \theta)}{(1+\cos \theta)(\sin \theta)}$
$=\frac{2}{\sin \theta}$
=RHS
Hence Proved

Question 25 

Prove the following identities
$\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=2 \sec ^{2} \theta$
Sol :
Taking LHS $=\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}$
$=\frac{1-\sin \theta+1+\sin \theta}{(1+\sin \theta)(1-\sin \theta)}$

Using the identity, (a2 – b2)= (a + b) (a – b)
$=\frac{2}{(1)^{2}-(\sin \theta)^{2}}$
$=\frac{2}{1-\sin ^{2} \theta}$
$=\frac{2}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
= 2 sec2 θ
=RHS
Hence Proved

Question 26 

Prove the following identities
$\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}=2 \sec \theta$
Sol :
Taking LHS $=\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}$
$=\frac{(1+\sin \theta)^{2}+\cos ^{2} \theta}{(1+\sin \theta)(\cos \theta)}$
$=\frac{1+\sin ^{2} \theta+2 \sin \theta+\cos ^{2} \theta}{(\cos \theta)(1+\sin \theta)}$
$=\frac{2+2 \sin \theta}{(\cos \theta)(1+\sin \theta)}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{2(1+\sin \theta)}{(\cos \theta)(1+\sin \theta)}$
$=\frac{2}{\cos \theta}$
=2 sec θ
=RHS
Hence Proved

Question 27 

Prove the following identities
$\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=\frac{2}{\cos \theta}$
Sol :
Taking LHS $=\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}$
$=\frac{\cos \theta(1+\sin \theta)+\cos \theta(1-\sin \theta)}{(1-\sin \theta)(1+\sin \theta)}$
$=\frac{\cos \theta+\cos \theta \sin \theta+\cos \theta-\cos \theta \sin \theta}{(1-\sin \theta)(1+\sin \theta)}$
$=\frac{2 \cos \theta}{(1-\sin \theta)(1+\sin \theta)}$

Using the identity, (a2 – b2)= (a + b) (a – b)
$=\frac{2 \cos \theta}{(1)^{2}-(\sin \theta)^{2}}$
$=\frac{2 \cos \theta}{1-\sin ^{2} \theta}$
$=\frac{2 \cos \theta}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{2}{\cos \theta}$
=RHS
Hence Proved

Question 28 

Prove the following identities
$\frac{1}{1+\cos \theta}+\frac{1}{1-\cos \theta}=\frac{2}{\sin ^{2} \theta}$
Sol :
Taking LHS $=\frac{1}{1+\cos \theta}+\frac{1}{1-\cos \theta}$
$=\frac{1-\cos \theta+1+\cos \theta}{(1+\cos \theta)(1-\cos \theta)}$

Using the identity, (a2 – b2)= (a + b) (a – b)
$=\frac{2}{(1)^{2}-(\cos \theta)^{2}}$
$=\frac{2}{1-\cos ^{2} \theta}$
$=\frac{2}{\sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved

Question 29 

Prove the following identities
$\frac{1}{1-\sin \theta}-\frac{1}{1+\sin \theta}=\frac{2 \tan \theta}{\cos \theta}$
Sol :
Taking LHS $=\frac{1}{1-\sin \theta}-\frac{1}{1+\sin \theta}$
$=\frac{1+\sin \theta-1+\sin \theta}{(1+\sin \theta)(1-\sin \theta)}$

Using the identity, (a2 – b2)= (a + b) (a – b)
$=\frac{2 \sin \theta}{(1)^{2}-(\sin \theta)^{2}}$
$=\frac{2 \sin \theta}{1-\sin ^{2} \theta}$
$=\frac{2 \sin \theta}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{2 \tan \theta}{\cos \theta}$
$\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
=RHS
Hence Proved

Question 30 

Prove the following identities
cot2θ – cos2θ = cot2θ . cos2θ
Sol :
Taking LHS = cot2 θ – cos2 θ
$=\frac{\cos ^{2} \theta}{\sin ^{2} \theta}-\cos ^{2} \theta$ $\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right]$
$=\frac{\cos ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta}{\sin ^{2} \theta}$
$=\frac{\cos ^{2} \theta\left(1-\sin ^{2} \theta\right)}{\sin ^{2} \theta}$
 [∵ cos2 θ + sin2 θ = 1]
$=\frac{\cos ^{2} \theta \cos ^{2} \theta}{\sin ^{2} \theta}$
= cot2 θ cos2 θ $\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right]$
=RHS
Hence Proved

Question 31 

Prove the following identities
tan2 φ – sin2 φ – tan2 φ . sin2 φ = 0
Sol :
Taking LHS = tan2 φ – sin2 φ – tan2 φ sin2 φ
$=\frac{\sin ^{2} \varphi}{\cos ^{2} \varphi}-\sin ^{2} \varphi-\frac{\sin ^{2} \varphi}{\cos ^{2} \varphi} \sin ^{2} \varphi$
$=\frac{\sin ^{2} \varphi-\sin ^{2} \varphi \cos ^{2} \varphi-\sin ^{4} \varphi}{\cos ^{2} \varphi}$
$=\frac{\sin ^{2} \varphi\left(1-\cos ^{2} \varphi-\sin ^{2} \varphi\right)}{\cos ^{2} \varphi}$
$=\frac{\sin ^{2} \varphi\left\{1-\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)\right]}{\cos ^{2} \varphi}$ [∵ cos2 φ + sin2 φ = 1]
$=\frac{\sin ^{2} \varphi\{1-1\}}{\cos ^{2} \varphi}$
= 0
=RHS
Hence Proved

Question 32 

Prove the following identities
tan2 φ + cot2 φ + 2 = sec2ϕ. cosec2ϕ
Sol :
Taking LHS = tan2 φ + cot2 φ + 2
$=\frac{\sin ^{2} \varphi}{\cos ^{2} \varphi}+\frac{\cos ^{2} \varphi}{\sin ^{2} \varphi}+2$
$=\frac{\sin ^{4} \varphi+\cos ^{4} \varphi+2 \sin ^{2} \varphi \cos ^{2} \varphi}{\cos ^{2} \varphi \sin ^{2} \varphi}$ [∵ (a + b)2 = (a2 + b2 + 2ab)]
$=\frac{\left(\sin ^{2} \varphi+\cos ^{2} \varphi\right)^{2}}{\cos ^{2} \varphi \sin ^{2} \varphi}$ [∵ cos2 φ + sin2 φ = 1]
$=\frac{1}{\cos ^{2} \varphi \sin ^{2} \varphi}$
= sec2 φ cosec2 φ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right.$ and $\left.\sin \theta=\frac{1}{\csc \theta}\right]$
=RHS
Hence Proved

Question 33 

Prove the following identities
$\frac{\operatorname{cosec} \theta+\cot \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}=\frac{1+\cos \theta}{\sin \theta}$
Sol :
Taking LHS $=\frac{\operatorname{cosec} \theta+\cot \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$
$=\frac{(\cot \theta+\operatorname{cosec} \theta)-\left(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta\right)}{\cot \theta-\operatorname{cosec} \theta+1}$ [∵ cot2 θ – cosec2 θ = 1]
$=\frac{(\cot \theta+\operatorname{cosec} \theta)-\{(\operatorname{cosec} \theta+\cot \theta)(\operatorname{cosec} \theta-\cot \theta)\}}{\cot \theta-\operatorname{cosec} \theta+1}$
$=\frac{(\cot \theta+\operatorname{cosec} \theta)(1-\operatorname{cosec} \theta+\cot \theta)}{\cot \theta-\operatorname{cosec} \theta+1}$
= cot θ + cosec θ
$=\frac{\cos \theta}{\sin \theta}+\frac{1}{\sin \theta}$ $\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right.$ and $\left.\sin \theta=\frac{1}{\csc \theta}\right]$
$=\frac{1+\cos \theta}{\sin \theta}$
=RHS
Hence Proved

Question 34 

Prove the following identities
$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\tan \theta+\cot \theta$
Sol :
Taking LHS $=\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}$
$=\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{1-\frac{\sin \theta}{\cos \theta}}$ $\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right.$ and $\left.\tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
$=\frac{\frac{\sin \theta}{\sin \theta-\cos \theta}}{\sin \theta}+\frac{\frac{\cos \theta}{\sin \theta}}{\frac{\cos \theta-\sin \theta}{\cos \theta}}$
$=\frac{\sin \theta}{\cos \theta} \times \frac{\sin \theta}{\sin \theta-\cos \theta}+\frac{\cos \theta}{\sin \theta} \times \frac{\cos \theta}{\cos \theta-\sin \theta}$
$=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta(\cos \theta-\sin \theta)}$
$=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta\{-(\sin \theta-\cos \theta)\}}$
$=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}-\frac{\cos ^{2} \theta}{\sin \theta(\sin \theta-\cos \theta)}$
$=\frac{\sin ^{3} \theta-\cos ^{3} \theta}{(\cos \theta \sin \theta)(\sin \theta-\cos \theta)}$
$=\frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)}{(\cos \theta \sin \theta)(\sin \theta-\cos \theta)}$ [∵ (a3 – b3)= (a – b)(a2 +b2 +ab)]
$=\frac{1+\sin \theta \cos \theta}{\cos \theta \sin \theta}$
$=\frac{1}{\cos \theta \sin \theta}+\frac{\sin \theta \cos \theta}{\cos \theta \sin \theta}$
= tan θ cot θ + 1
=RHS
Hence Proved

Question 35 

Prove the following identities
$\frac{1-\cos \theta}{1+\cos \theta}=(\cot \theta-\operatorname{cosec} \theta)^{2}$
Sol :
Taking LHS $=\frac{1-\cos \theta}{1+\cos \theta}$

Multiplying and divide by the conjugate of 1 + cos θ , we get
$=\frac{1-\cos \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}$
$=\frac{(1-\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}$
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
$=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}$
$=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
$=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$
$=\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2}$
= (cosec θ – cot θ)2
= { – (cot θ – cosec θ)}2
= (cot θ – cosec θ)2
=RHS
Hence Proved

Question 36 

Prove the following identities
$\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\frac{1+\cos \theta}{\sin \theta}$
Sol :
Taking LHS $=\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$
$=\sqrt{\frac{1+\cos \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}}$ [multiplying and divide by conjugate of 1– cosθ]
$=\sqrt{\frac{(1+\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}}$
$=\sqrt{\frac{(1+\cos \theta)^{2}}{\left(1-\cos ^{2} \theta\right)}}$
$=\sqrt{\frac{(1+\cos \theta)^{2}}{\sin ^{2} \theta}}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1+\cos \theta}{\sin \theta}$
=RHS
Hence Proved

Question 37 

Prove the following identities
$\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\frac{\sin \theta}{1-\cos \theta}$
Sol :
Taking LHS $=\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$
$=\sqrt{\frac{1+\cos \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}}$ [multiplying and divide by conjugate of 1– cosθ]
$=\sqrt{\frac{(1+\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}}$
$=\sqrt{\frac{(1+\cos \theta)^{2}}{\left(1-\cos ^{2} \theta\right)}}$
$=\sqrt{\frac{(1+\cos \theta)^{2}}{\sin ^{2} \theta}}$ [∵ cos2 θ + sin2 θ = 1]
$=\frac{1+\cos \theta}{\sin \theta}$

Multiply and divide by conjugate of 1+ cosθ, we get
$=\frac{1+\cos \theta}{\sin \theta} \times \frac{1-\cos \theta}{1-\cos \theta}$
$=\frac{1-\cos ^{2} \theta}{\sin \theta \times(1-\cos \theta)}$
$=\frac{\sin ^{2} \theta}{\sin \theta \times(1-\cos \theta)}$
$=\frac{\sin \theta}{1-\cos \theta}$
=RHS
Hence Proved

Question 38 

Prove the following identities
$\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\sec \theta-\tan \theta$
Sol :
Taking LHS $=\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$
$=\sqrt{\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}}$ [multiplying and divide by conjugate of 1+sinθ]
$=\sqrt{\frac{(1-\sin \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}}$
$=\sqrt{\frac{(1-\sin \theta)^{2}}{\left(1-\sin ^{2} \theta\right)}}$
$=\sqrt{\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}}$ [∵ cos2 θ + sin2 θ = 1]
=$=\frac{1-\sin \theta}{\cos \theta}$
$=\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}$
= sec θ – tan θ 
$\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right.$ and $\left.\cos \theta=\frac{1}{\sec \theta}\right]$
=RHS
Hence Proved

Question 39 

Prove the following identities
$\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\frac{\cos \theta}{1+\sin \theta}$
Sol :
Taking LHS $=\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$

$=\sqrt{\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1+\sin \theta}{1+\sin \theta}}$ [multiplying and divide by of 1+ sin θ]

$=\sqrt{\frac{(1)^{2}-(\sin \theta)^{2}}{(1+\sin \theta)^{2}}}$

$=\sqrt{\frac{1-\sin ^{2} \theta}{(1+\sin \theta)^{2}}}$

$=\sqrt{\frac{\cos ^{2} \theta}{(1+\sin \theta)^{2}}}$ [∵ cos2 θ + sin2 θ = 1]

$=\frac{\cos \theta}{1+\sin \theta}$
=RHS
Hence Proved

Question 40 

Prove the following identities
$\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=2 \sec \theta$
Sol :
Taking LHS $=\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$

[multiplying and divide by conjugate of 1– sinθ in 1st term and 1+sinθ in 2nd term]

$=\sqrt{\frac{1+\sin \theta}{1-\sin \theta} \times \frac{1+\sin \theta}{1+\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}}$

$=\sqrt{\frac{(1+\sin \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}}+\sqrt{\frac{(1-\sin \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}}$

$=\sqrt{\frac{(1+\sin \theta)^{2}}{\left(1-\sin ^{2} \theta\right)}}+\sqrt{\frac{(1-\sin \theta)^{2}}{\left(1-\sin ^{2} \theta\right)}}$

$=\sqrt{\frac{(1+\sin \theta)^{2}}{\cos ^{2} \theta}}+\sqrt{\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}}$ [∵ cos2 θ + sin2 θ = 1]

=$\frac{1+\sin \theta}{\cos \theta}+\frac{1-\sin \theta}{\cos \theta}$

$=\frac{1+\sin \theta+1-\sin \theta}{\cos \theta}$

$=\frac{2}{\cos \theta}$
= 2 sec θ
=RHS
Hence Proved

Question 41 

If secθ + tanθ=m and sec θ – tanθ = n, then prove that $\sqrt{m n}=1$
Sol :
Given : secθ+tanθ=m and sec θ–tanθ=n
To Prove : √mn = 1
Taking LHS = √mn
Putting the value of m and n, we get
$=\sqrt{(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)}$
Using the identity, (a + b) (a – b) = (a2 – b2)

$=\sqrt{\sec ^{2} \theta-\tan ^{2} \theta}$

=√(1) [∵ 1+ tan2 θ = sec2 θ]
=±1
=RHS
Hence Proved

Question 42 

If cosθ + sinθ = 1, then prove that cosθ – sin θ = ± 1.
Sol :
Given: cos θ+sinθ=1
On squaring both the sides, we get
(cos θ +sin θ)2 =(1)2
⇒ cos2 θ + sin2 θ + 2sinθ cos θ = 1
⇒ cos2 θ + sin2 θ = cos2 θ + sin2 θ – 2sinθ cos θ
[∵ cos2 θ + sin2 θ = 1]
⇒ cos2 θ + sin2 θ = (cosθ – sinθ)2
[∵ (a – b)2 = (a2 + b2 – 2ab)]
⇒ 1 = (cos θ – sin θ)2
⇒ (cos θ – sin θ) = ±1
Hence Proved

Question 43 

If sinθ + sin2θ = 1, then prove that cos2θ +1 cos4θ = 1
Sol :
Given : sin θ + sin2 θ = 1
⇒ sin θ = 1 – sin2 θ
Taking LHS = cos2θ+ cos4θ
= cos2 θ + (cos2 θ)2
= (1– sin2 θ) + (1– sin2 θ)2 …(i)
Putting sin θ = 1 – sin2 θ in Eq. (i), we get
= sin θ + (sin θ)2
= sin θ + sin2 θ
= 1 [Given: sin θ + sin2 θ = 1]
=RHS
Hence Proved

Question 44 

If tanθ + secθ = x, show that sinθ =$\frac{x^{2}-1}{x^{2}+1}$
Sol :
To show : $\sin \theta=\frac{x^{2}-1}{x^{2}+1}$
Taking RHS $=\frac{x^{2}-1}{x^{2}+1}$
Given tanθ+secθ=x

$=\frac{(\tan \theta+\sec \theta)^{2}-1}{(\tan \theta+\sec \theta)^{2}+1}$

$=\frac{\tan ^{2} \theta+\sec ^{2} \theta+2 \tan \theta \sec \theta-1}{\tan ^{2} \theta+\sec ^{2} \theta+2 \tan \theta \sec \theta+1}$

$=\frac{\tan ^{2} \theta+\tan ^{2} \theta+2 \tan \theta \sec \theta}{\sec ^{2} \theta-1+\sec ^{2} \theta+2 \tan \theta \sec \theta+1}$ [∵ 1+ tan2 θ = sec2 θ]

$=\frac{2 \tan ^{2} \theta+2 \tan \theta \sec \theta}{2 \sec ^{2} \theta+2 \tan \theta \sec \theta}$

$=\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\frac{\sin \theta}{\cos \theta} \times \frac{1}{\cos \theta}}{\frac{1}{\cos ^{2} \theta}+\frac{\sin \theta}{\cos \theta} \times \frac{1}{\cos \theta}}$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta} \text { and } \cos \theta=\frac{1}{\sec \theta}\right]$

$=\frac{\sin ^{2} \theta+\sin \theta}{1+\sin \theta}$

$=\frac{\sin \theta(\sin \theta+1)}{1+\sin \theta}$
=sin θ
=LHS
Hence Proved

Question 45 

If sinθ + cosθ = p and secθ + cosecθ = q, then show q(p2–1) =2p
Sol :
Given: sin θ + cos θ = p and sec θ + cosec θ = q
To show q(p2 – 1) = 2p
Taking LHS = q(p2 – 1)
Putting the value of sin θ + cos θ = p and sec θ + cosec θ = q, we get
=(sec θ + cosec θ){( sin θ + cos θ )2 – 1)
=(sec θ + cosec θ){(sin2 θ + cos2 θ + 2sin θ cosθ) – 1)}
[∵ (a + b)2 = (a2 + b2 + 2ab)]
=(sec θ + cosec θ)(1+2sin θ cos θ – 1)
=(sec θ + cosec θ)(2sin θcosθ)

$=\left(\frac{1}{\cos \theta}+\frac{1}{\sin \theta}\right) \times(2 \sin \theta \cos \theta)$ $\left[\because \cos \theta=\frac{1}{\sec \theta} \text { and } \sin \theta=\frac{1}{\cos \theta}\right]$

$=\frac{\sin \theta+\cos \theta}{\cos \theta \sin \theta} \times 2 \sin \theta \cos \theta$

= 2(sin θ +cos θ)
= 2p [ given sin θ + cos θ = p]
=RHS
Hence Proved

Question 46 

If x cosθ =a and y = a tanθ, then prove that x2–y2=a2
Sol :
Given: x cosθ = a and y = a tanθ

⇒$\mathrm{x}=\frac{\mathrm{a}}{\cos \theta}$ and $y=a \tan \theta$

To Prove : x2–y2=a2
Taking LHS = x2–y2
Putting the values of x and y, we get

$=\left(\frac{a}{\cos \theta}\right)^{2}-(a \tan \theta)^{2}$

$=\frac{a^{2}}{\cos ^{2} \theta}-a^{2} \tan ^{2} \theta$

$=\frac{a^{2}}{\cos ^{2} \theta}-a^{2} \frac{\sin ^{2} \theta}{\cos ^{2} \theta}$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$

$=\frac{a^{2}-a^{2} \sin ^{2} \theta}{\cos ^{2} \theta}$

$=\frac{a^{2}\left(1-\sin ^{2} \theta\right)}{\cos ^{2} \theta}$

$=\frac{a^{2} \cos ^{2} \theta}{\cos ^{2} \theta}$ [∵ cos2 θ + sin2 θ = 1]
= a2
= RHS
Hence Proved

Question 47 

If x= r cos α sin β, y = r sin α sin β and z = r cos α then prove that x2 + y2 + z2 = r2.
Sol :
Taking LHS = x2 + y2 + z2
Putting the values of x, y and z , we get
=(r cos α sin β)2 + (r sin α sin β)2 + (r cos α)2
= r2 cos2α sin2β + r2 sin2α sin2β + r2 cos2α
Taking common r2 sin2 α , we get
= r2 sin2α (cos2β + sin2 β) + r2cos2 α
= r2 sin2α + r2 cos2 α [∵ cos2 β + sin2 β = 1]
=r2 ( sin2 α + cos2 α)
= r2 [∵ cos2 α + sin2 α = 1]
=RHS
Hence Proved

Question 48 

If secθ – tanθ = x, then prove that
(i)$\cos \theta=\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}$
(ii) $\sin \theta=\frac{1-x^{2}}{1+x^{2}}$
Sol :
(i) Given sec θ – tan θ = x
Taking RHS $=\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}$
Putting the value of x, we get
$=\frac{2(\sec \theta-\tan \theta)}{1+(\sec \theta-\tan \theta)^{2}}$

$=\frac{2(\sec \theta-\tan \theta)}{1+\sec ^{2} \theta+\tan ^{2} \theta-2 \sec \theta \tan \theta}$

$=\frac{2(\sec \theta-\tan \theta)}{\sec ^{2} \theta+\sec ^{2} \theta-2 \sec \theta \tan \theta}$ [∵ 1+ tan2 θ = sec2 θ]

$=\frac{2(\sec \theta-\tan \theta)}{2 \sec \theta(\sec \theta-\tan \theta)}$

$=\frac{1}{\sec \theta}$ $\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$

= cos θ
=RHS
Hence Proved

(ii) Given sec θ – tan θ = x

Taking RHS $=\frac{1-x^{2}}{1+x^{2}}$

Putting the value of x, we get

$=\frac{1-(\sec \theta-\tan \theta)^{2}}{1+(\sec \theta-\tan \theta)^{2}}$

$=\frac{1-\sec ^{2} \theta-\tan ^{2} \theta+2 \sec \theta \tan \theta}{1+\sec ^{2} \theta+\tan ^{2} \theta-2 \sec \theta \tan \theta}$

$=\frac{\left.-\tan ^{2} \theta-\tan ^{2} \theta+2 \sec \theta \tan \theta\right)}{\sec ^{2} \theta+\sec ^{2} \theta-2 \sec \theta \tan \theta}$ [∵ 1+ tan2 θ = sec2 θ]

$=\frac{2 \tan \theta(\sec \theta-\tan \theta)}{2 \sec \theta(\sec \theta-\tan \theta)}$

=$\frac{\sin \theta}{\cos \theta} \times \cos \theta$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
= sin θ
=RHS
Hence Proved

Question 49 

If a cos θ + b sinθ = c, then prove that a sinθ – b cos θ = ±  $\sqrt{a^{2}+b^{2}-c^{2}}$
Sol :
Let
(a cos θ + b sin θ)2 + (a sin θ – b cos θ)2 = a2cos2θ + b2 sin2θ + 2ab cos θ sin θ + a2sin2θ
+ b2 cos2θ – 2ab cos θ sin θ
⇒ c2 + (a sin θ – b cos θ)2 = a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)
⇒ c2 + (a sin θ – b cos θ)2 = a2 + b2
⇒ (a sin θ – b cos θ)2 = a2 + b2 – c2
⇒ (a sin θ – b cos θ) = ±√ (a2 + b2 – c2)

Question 50 

If 1+sin2θ = 3 sinθ . cosθ, then prove that tan θ = 1 or 1/2.
Sol :
Given: 1+sin2θ =3 sin θ cos θ
Divide by cos2 θ to both the sides, we get

⇒$\frac{1}{\cos ^{2} \theta}+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{3 \sin \theta \cos \theta}{\cos ^{2} \theta}$

⇒ sec2 θ + tan2 θ = 3 tan θ
⇒ 1+ tan2 θ+ tan2 θ = 3tan θ
⇒ 2 tan2 θ –3tan θ +1 = 0
Let tanθ = x
⇒ 2x2 – 3x +1 = 0
⇒ 2x2 – 2x – x +1 = 0
⇒ 2x ( x – 1) – 1(x – 1) = 0
⇒ (2x – 1)(x – 1) = 0
Putting each of the factor = 0, we get
⇒ x = 1 or $\dfrac{1}{2}$
And above, we let tan θ = x

⇒$\tan \theta=1$ or $\frac{1}{2}$

Hence Proved

Question 51 

If a cos θ – b sinθ = x and a sinθ + b cosθ = y that a2 + b2 = x2 + y2.
Sol :
Taking RHS =x2 + y2
Putting the values of x and y, we get
(a cos θ – b sin θ)2 + (a sin θ + b cos θ)2
= a2cos2θ + b2 sin2θ – 2ab cos θ sin θ + a2sin2θ + b2 cos2θ + 2ab cos θ sin θ
= a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)
= a2 + b2 [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved

Question 52 

If x = a sec θ + b tan θ a and y = a tan θ + b sec θ, then prove that x2 – y2 = a2 – b2.
Sol :
Taking LHS =x2 – y2
Putting the values of x and y, we get
(a sec θ + b tan θ)2 – (a tan θ + b sec θ)2
= a2 sec2θ + b2 tan2θ + 2ab sec θ tan θ – a2tan2θ – b2 sec2θ – 2ab sec θ tan θ
= a2 (sec2θ – tan2θ) – b2 (sec2θ – tan2θ)
= a2 – b2 [∵ 1+ tan2 θ = sec2 θ]
=RHS
Hence Proved

Question 53 

If (a2 – b2) sin θ + 2ab cosθ = a2 + b2, then prove that .
$\tan \theta=\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{ab}}$
Sol :
Taking (a2 – b2) sin θ + 2ab cos θ = a2 + b2
We know that

$\sin \theta=\frac{2 \tan \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}$ and $\cos \theta=\frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}$

Then, substituting the above values in the given equation, we get

$=\mathrm{a}^{2}-\mathrm{b}^{2} \frac{2 \tan \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}+2 \mathrm{ab} \frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}=\mathrm{a}^{2}+\mathrm{b}^{2}$

Now, substituting,$t=\tan \frac{\theta}{2}$ , we have

$a^{2}-b^{2} \frac{2 t}{1+t^{2}}+2 a b \frac{1-t^{2}}{1+t^{2}}=a^{2}+b^{2}$

⇒ ( a2 – b2)2t – 2ab(1 – t2) = (a2 + b2)(1+t2)
Simplify, we get
(a2 + 2ab + b2)t2 – 2(a2 – b2)t + (a2 –2ab +b2)=0
⇒ (a+b)2 t2 – 2(a2 – b2)t + (a – b)2 = 0
⇒ (a+b)2 t2 –2 (a – b)(a+b)t + (a – b)2 =0
⇒ [(a+b)t – (a – b)]2 = 0 [∵ (a – b)2 = (a2 + b2 – 2ab)]
⇒ [(a+b)t – (a – b)] = 0
⇒ (a+b)t = (a – b)
⇒$ \mathrm{t}=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}$

⇒$ \tan \frac{\theta}{2}=\frac{a-b}{a+b}$

We know that, $\frac{2 t}{1-t^{2}}=\tan \theta$ where $\mathrm{t}=\tan \frac{\theta}{2}$

$\Rightarrow \tan \theta=\frac{2\left(\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}\right)}{1-\left(\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}\right)^{2}}$

$\Rightarrow \tan \theta=\frac{2(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})}{(\mathrm{a}+\mathrm{b})^{2}-(\mathrm{a}-\mathrm{b})^{2}}$

$\Rightarrow \tan \theta=\frac{a^{2}-b^{2}}{2 a b}$

Hence Proved

S.noChaptersLinks
1Real numbersExercise 1.1
Exercise 1.2
Exercise 1.3
Exercise 1.4
2PolynomialsExercise 2.1
Exercise 2.2
Exercise 2.3
3Pairs of Linear Equations in Two VariablesExercise 3.1
Exercise 3.2
Exercise 3.3
Exercise 3.4
Exercise 3.5
4Trigonometric Ratios and IdentitiesExercise 4.1
Exercise 4.2
Exercise 4.3
Exercise 4.4
5TrianglesExercise 5.1
Exercise 5.2
Exercise 5.3
Exercise 5.4
Exercise 5.5
6StatisticsExercise 6.1
Exercise 6.2
Exercise 6.3
Exercise 6.4
7Quadratic EquationsExercise 7.1
Exercise 7.2
Exercise 7.3
Exercise 7.4
Exercise 7.5
8Arithmetic Progressions (AP)Exercise 8.1
Exercise 8.2
Exercise 8.3
Exercise 8.4
9Some Applications of Trigonometry: Height and DistancesExercise 9.1
10Coordinates GeometryExercise 10.1
Exercise 10.2
Exercise 10.3
Exercise 10.4
11CirclesExercise 11.1
Exercise 11.2
12ConstructionsExercise 12.1
13Area related to CirclesExercise 13.1
14Surface Area and VolumesExercise 14.1
Exercise 14.2
Exercise 14.3
Exercise 14.4
15ProbabilityExercise 15.1

No comments:

Post a Comment

Contact Form

Name

Email *

Message *