KC Sinha Mathematics Solution Class 10 Chapter 4 Trigonometric Ratios and Identities Exercise 4.2


Exercise 4.1
Exercise 4.2
Exercise 4.3
Exercise 4.4

Exercise 4.2


Question 1 

Find the value of the following :
(i) sin 30o + cos 60o
(ii) sin2 45o+cos245o
(iii) sin 30o + cos 60o – tan45o
(iv) $\sqrt{1+\tan ^{2} 60^{\circ}}$
(v) tan 60o x cos30o
Sol :
(i) sin 30o + cos 60o
We know that,
$\sin \left(30^{\circ}\right)=\frac{1}{2}>\cos \left(60^{\circ}\right)=\frac{1}{2}$

So,
sin(30o) + cos(60o)
$=\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)$
=1

(ii) sin2 45o+cos245o
We know that,
$\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
$\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$

So, sin2 45o+cos245o
$=\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}$
$=\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)$
=1

(iii) sin 30o + cos 60o – tan45o
$\sin \left(30^{\circ}\right)=\frac{1}{2}$
$\cos \left(60^{\circ}\right)=\frac{1}{2}$
tan(45o)=1
So,
sin 30o + cos 60o – tan 45o
$=\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)-1$
$=\frac{1+1-2}{2}$
=0

(iv) $\sqrt{1+\tan ^{2} 60^{\circ}}$
We know that
tan(60o) = √3
So,
$=\sqrt{1+\tan ^{2} 60^{\circ}}$
$=\sqrt{1+(\sqrt{3})^{2}}$
$=\sqrt{1+3}$
=√4
= 2
(v) tan 60o × cos30o
tan(60o) = √3
$\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
So,
tan 60o × cos30o
$=\sqrt{3} \times \frac{\sqrt{3}}{2}$
$=\frac{3}{2}$

Question 2 

If θ = 45°, find the value of
(i) $\tan ^{2} \theta+\frac{1}{\sin ^{2} \theta}$
(ii) cos2 θ - sin2 θ
Sol :
(i) $\tan ^{2} \theta+\frac{1}{\sin ^{2} \theta}$
Given θ =45°
We know that,
tan(45o) = 1
$\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
$=(1)^{2}+\frac{1}{\left(\frac{1}{\sqrt{2}}\right)^{2}}$
= 1+ 2
= 3
(ii) cos2 θ – sin2 θ
Given θ = 45°
$\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
$\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
So, cos2 45° – sin2 45°
$=\left(\frac{1}{\sqrt{2}}\right)^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}$
= 0

Question 3 A 

Find the numerical value of the following :
sin45°.cos45° – sin230°.
Sol :
We know that,
$\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
$\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
$\sin \left(30^{\circ}\right)=\frac{1}{2}$

Now, putting the values
$=\left(\frac{1}{\sqrt{2}}\right) \times\left(\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{2}\right)^{2}$
$=\left(\frac{1}{2}\right)-\left(\frac{1}{4}\right)$
$=\left(\frac{1}{4}\right)$

Question 3 B 

Find the numerical value of the following :
$\frac{\tan 60^{\circ}}{\sin 60^{\circ}+\cos 60^{\circ}}$
Sol :
We know that,
$\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\cos \left(60^{\circ}\right)=\frac{1}{2}$
tan (60°) = √3

Now putting the values;
$=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}+\frac{1}{2}}$
$=\frac{\frac{\sqrt{3}}{1+\sqrt{3}}}{2}$
$=\sqrt{3} \times \frac{2}{1+\sqrt{3}}$
$=\frac{2 \sqrt{3}}{1+\sqrt{3}}$

Multiplying and dividing by the conjugate of (1+√3)
$=\frac{2 \sqrt{3}}{1+\sqrt{3}} \times \frac{1-\sqrt{3}}{1-\sqrt{3}}$
$=\frac{2 \sqrt{3}-6}{(1)^{2}-(\sqrt{3})^{2}}$ [∵(a)2 – (b)2 = (a+b)(a-b)]
$=\frac{2 \sqrt{3}-6}{-2}$

Multiplying and dividing by (-2)
= 3 - √3

Question 3 C 

Find the numerical value of the following :
$\frac{\tan 60^{\circ}}{\sin 60^{\circ}+\cos 30^{\circ}}$
Sol :
We know that,
$\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
tan (60o) = √3

Now putting the values;
$=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}}$
$=\frac{\sqrt{3}}{\sqrt{3}}$
= 1

Question 3 D 

Find the numerical value of the following :
$\frac{4}{\sin ^{2} 60^{\circ}}+\frac{3}{\cos ^{2} 60^{\circ}}$
Sol :
We know that
$\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\cos \left(60^{\circ}\right)=\frac{1}{2}$

Now putting the value, we get
$=\frac{4}{\left(\frac{\sqrt{3}}{2}\right)^{2}}+\frac{3}{\left(\frac{1}{2}\right)^{2}}$
$=4 \times\left(\frac{2}{\sqrt{3}}\right)^{2}+3 \times(2)^{2}$
$=4\left(\frac{4}{3}\right)+3 \times 4$
$=\frac{16}{3}+12$
$=\frac{16+36}{3}$
$=\frac{52}{3}$

Question 3 E 

Find the numerical value of the following :
sin2 60° – cos2 60°
Sol :
We know that,
$\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\cos \left(60^{\circ}\right)=\frac{1}{2}$

Now putting the value;
$=\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}$
$=\left(\frac{3}{4}\right)-\left(\frac{1}{4}\right)$
$=\frac{1}{2}$

Question 3 F 

Find the numerical value of the following :
4sin2 30° + 3 tan 30° – 8 sin 45° cos 45°
Sol :
We know that,
$\sin \left(30^{\circ}\right)=\frac{1}{2}$
$\tan \left(30^{\circ}\right)=\frac{1}{\sqrt{3}}$
$\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
$\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$

Now putting the value, we get
$=4 \times\left(\frac{1}{2}\right)^{2}+3 \times\left(\frac{1}{\sqrt{3}}\right)^{2}-8 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}$
$=4 \times \frac{1}{4}+3 \times \frac{1}{3}-8 \times \frac{1}{2}$
= 1 + 1 – 4
= -2

Question 3 G 

Find the numerical value of the following :
2sin230° – 3cos2 45° + tan2 60ׄ°
Sol :
We know that,
$\sin \left(30^{\circ}\right)=\frac{1}{2}$
$\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$

Tan (60o) = √3
Now putting the value;
$=2 \times\left(\frac{1}{2}\right)^{2}-3 \times\left(\frac{1}{\sqrt{2}}\right)^{2}+(\sqrt{3})^{2}$
$=2 \times \frac{1}{4}-3 \times \frac{1}{2}+3$
$=\frac{1}{2}-\frac{3}{2}+3$
$=\frac{1-3+6}{2}$
$=\frac{4}{2}$
=2

Question 3 H 

Find the numerical value of the following :
sin 90° + cos 0° + sin 30° + cos 60°
Sol :
We know that,
Sin (90o) = 1
Cos (0o) = 1
$\sin \left(30^{\circ}\right)=\frac{1}{2}$
$\cos \left(60^{\circ}\right)=\frac{1}{2}$

Now putting the value;
$=1+1+\frac{1}{2}+\frac{1}{2}$
$=\frac{2+2+1+1}{2}$
$=\frac{6}{2}$
= 3

Question 3 I 

Find the numerical value of the following :
sin 90° – cos 0° + tan 0° + tan 45°
Sol :
We know that
Sin (90o) = 1
Cos (0o) = 1
Tan(0o) = 0
Tan(45o) = 1
Now putting the value, we get
= 1 – 1 + 0 + 1
= 1

Question 3 J 

Find the numerical value of the following :
$\cos ^{2} 0^{\circ}+\tan ^{2} \frac{\pi}{4}+\sin ^{2} \frac{\pi}{4}$, where π = 180°
Sol :
We know that
Cos (0o) = 1
Tan (45o) = 1 $\left[\frac{\pi}{4}=\frac{180^{\circ}}{4}=45^{\circ}\right]$
$\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}\left[\frac{\pi}{4}=\frac{180^{\circ}}{4}=45^{\circ}\right]$

Now putting the values;
$=(1)^{2}+(1)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}$
$=1+1+\frac{1}{2}$
$=\frac{2+2+1}{2}$
$=\frac{5}{2}$

Question 3 K 

Find the numerical value of the following :
$\frac{\cos 60^{\circ}}{\sin ^{2} 45^{\circ}}-3 \cot 45^{\circ}+2 \sin 90^{\circ}$
Sol :
We know that,
$\cos \left(60^{\circ}\right)=\frac{1}{2}$
$\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
Cot (45o) = 1
Sin (90o) = 1
Now putting the values, we get
$=\frac{\frac{1}{2}}{\left(\frac{1}{\sqrt{2}}\right)^{2}}-3(1)+2(1)$
= 1-3+2
=0

Question 3 L 

Find the numerical value of the following :
$\frac{4}{\tan ^{2} 60^{\circ}}+\frac{1}{\cos ^{2} 30^{\circ}}-\sin ^{2} 45^{\circ}$
Sol :
We can write the above equation as:
= 4 cot2 60o + sec2 30o – sin2 45o …(a) $\left[\because \cos \theta=\frac{1}{\sec \theta}\right.$ and $\left.\tan \theta=\frac{1}{\cot \theta}\right]$
$\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
$\cot \left(60^{\circ}\right)=\frac{1}{\sqrt{3}}$
$\operatorname{Sec}\left(30^{\circ}\right)=\frac{2}{\sqrt{3}}$

Now putting the values in (a);
$=4\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{2}{\sqrt{3}}\right)^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}$
$=4 \times \frac{1}{3}+\frac{4}{3}-\frac{1}{2}$
$=\frac{8+8-3}{6}$
$=\frac{13}{6}$

Question 3 M 

Find the numerical value of the following :
cos60° . cos 30° – sin 60° . sin 30°
Sol :
We know that,
$\cos \left(60^{\circ}\right)=\frac{1}{2}$
$\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\sin \left(30^{\circ}\right)=\frac{1}{2}$

Now putting the values, we get
$=\frac{1}{2} \times \frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2} \times \frac{1}{2}$
$=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}$
= 0

Question 3 N 

Find the numerical value of the following :
$\frac{4\left(\sin ^{2} 60^{\circ}-\cos ^{2} 45^{\circ}\right)}{\tan ^{2} 30^{\circ}+\cos ^{2} 90^{\circ}}$
Sol :
We know that,
$\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
$\tan \left(30^{\circ}\right)=\frac{1}{\sqrt{3}}$
cos(90o) = 0

Now putting the values;
$=4 \times \frac{\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}}{\left(\frac{1}{\sqrt{3}}\right)^{2}-(0)^{2}}$
$=4 \times \frac{\frac{3}{4}-\frac{1}{2}}{\frac{1}{3}}$
$=4 \times \frac{1}{4} \times 3$
= 3

Question 4 A 

Evaluate the following :
sin30°.cos45° + cos30°.sin45°
Sol :
We know that,
$\sin \left(30^{\circ}\right)=\frac{1}{2}$
$\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
$\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$

Now putting the values, we get
$=\frac{1}{2} \times \frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}$
$=\frac{1}{2 \sqrt{2}}+\frac{\sqrt{3}}{2 \sqrt{2}}$
$=\frac{1+\sqrt{3}}{2 \sqrt{2}}$

Question 4 B 

Evaluate the following :
cosec230°.tan245° – sec260°
Sol :
We know that
cosec (30o) = 2
Tan(45o) = 1
sec (60 o) = 2
Now putting the values;
= (2)2 × (1)2 - (2)2
= 4 – 4
= 0

Question 4 C 

Evaluate the following :
2sin230°.tan60° – 3cos260°.sec230°
Sol :
We know that
$\sin \left(30^{\circ}\right)=\frac{1}{2}$
tan (60o) = √3
$\cos \left(60^{\circ}\right)=\frac{1}{2}$
$\sec \left(30^{\circ}\right)=\frac{2}{\sqrt{3}}$

Now putting the values;
$=2 \times\left(\frac{1}{2}\right)^{2} \times(\sqrt{3})-\left(3 \times\left(\frac{1}{2}\right)^{2} \times\left(\frac{2}{\sqrt{3}}\right)^{2}\right)$
$=2 \times \frac{1}{4} \times(\sqrt{3})-\left(3 \times \frac{1}{4} \times \frac{4}{3}\right)$
$=\frac{\sqrt{3}}{2}-1$
$=\frac{\sqrt{3}-2}{2}$

Question 4 D 

Evaluate the following :
tan60° . cosec245° + sec260°.tan45°
Sol :
We know that
tan (60o) = √3
cosec (45o) = √2
sec (60 o) = 2
tan(45o) = 1
Now putting the values;
= (√3) × (√2)2 + (2)2 × (1)
= 2√3 +4
=2 (√3 + 2)

Question 4 E 

Evaluate the following :
tan30°.sec45° + tan60°.sin30°
Sol :
We know that
$\tan \left(30^{\circ}\right)=\frac{1}{\sqrt{3}}$
sec (45o) = √2
tan (60o) = √3
$\sec \left(30^{\circ}\right)=\frac{2}{\sqrt{3}}$

Now putting the values, we get
$=\frac{1}{\sqrt{3}} \times \sqrt{2}+\sqrt{3} \times \frac{2}{\sqrt{3}}$
$=\frac{\sqrt{2}}{\sqrt{3}}+2$
$=2+\frac{\sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$=2+\frac{\sqrt{6}}{3}$

Question 4 F 

Evaluate the following :
cos30°.cos45° – sin30°.sin45°
Sol :
We know that
$\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
$\sin \left(30^{\circ}\right)=\frac{1}{2}$
$\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$

Now putting the values, we get
$=\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}-\frac{1}{2} \times \frac{1}{\sqrt{2}}$
$=\frac{\sqrt{3}-1}{2 \sqrt{2}}$

Multiplying and dividing by (√2), we get
$=\frac{\sqrt{3}-1}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$
$=\frac{\sqrt{2}(\sqrt{3}-1)}{4}$

Question 4 G 

Evaluate the following :
$\frac{4}{3} \tan ^{2} 30^{\circ}+\sin ^{2} 60^{\circ}-3 \cos ^{2} 60^{\circ}+\frac{3}{4} \tan ^{2} 60^{\circ}-2 \tan ^{2} 45^{\circ}$
Sol :
We know that
$\begin{aligned} \tan \left(30^{\circ}\right) &=\frac{1}{\sqrt{3}} \\ \sin \left(60^{\circ}\right) &=\frac{\sqrt{3}}{2} \\ \cos \left(60^{\circ}\right) &=\frac{1}{2} \end{aligned}$
tan (60o) = √3
tan(45o) = 1

Now putting the values;
$=\left(\frac{4}{3} \times\left(\frac{1}{\sqrt{3}}\right)^{2}\right)+\left[\left(\frac{\sqrt{3}}{2}\right)^{2}\right]-\left[3 \times\left(\frac{1}{2}\right)^{2}\right]+\left[\frac{3}{4}(\sqrt{3})^{2}\right]-\left[2 \times(1)^{2}\right]$
$=\left[\frac{4}{3} \times \frac{1}{3}\right]+\left[\frac{3}{4}\right]-\left[3 \times \frac{1}{4}\right]+\left[\frac{3}{4} \times 3\right]-[2 \times(1)]$
$=\frac{4}{9}+\frac{3}{4}-\frac{3}{4}+\frac{9}{4}-2$
$=\frac{16+27-27+81-72}{36}$
$=\frac{25}{36}$

Question 4 H 

Evaluate the following :
$\frac{\tan ^{2} 60^{\circ}+4 \cos ^{2} 45^{\circ}+3 \sec ^{2} 30^{\circ}+5 \cos ^{2} 90^{\circ}}{\operatorname{cosec} 30^{\circ}+\sec 60^{\circ}-\cot ^{2} 30^{\circ}}$
Sol :
We know that
tan (60o) = √3
$\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
$\sec \left(30^{\circ}\right)=\frac{2}{\sqrt{3}}$
cos(90o) = 0
cosec (30o) = 2
sec (60 o) = 2
cot (30o) = √3

Now putting the values, we get
$=\frac{(\sqrt{3})^{2}+\left[4 \times\left(\frac{1}{\sqrt{2}}\right)^{2}\right]+\left[3 \times\left(\frac{2}{\sqrt{3}}\right)^{2}\right]+\left[5 \times(0)^{2}\right]}{(2)+(2)-(\sqrt{3})^{2}}$
$=\frac{(3)+\left[4 \times \frac{1}{2}\right]+\left[3 \times \frac{4}{3}\right]+[5 \times 0]}{2+2-3}$
$=\frac{(3)+[2]+[4]+[0]}{2+2-3}$
= 9

Question 4 I 

Evaluate the following :
$\frac{5 \sin ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}-4 \tan ^{2} 30^{\circ}}{2 \sin 30^{\circ} \cdot \cos 30^{\circ}+\tan 45^{\circ}}$
Sol :
We know that
$\sin \left(30^{\circ}\right)=\frac{1}{2}$
$\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
$\tan \left(30^{\circ}\right)=\frac{1}{\sqrt{3}}$
$\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
tan (45o) = 1

Now putting the values, we get
$=\frac{\left[5 \times\left(\frac{1}{2}\right)^{2}\right]+\left(\frac{1}{\sqrt{2}}\right)^{2}-\left[4 \times\left(\frac{1}{\sqrt{3}}\right)^{2}\right]}{2\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)+(1)}$
$=\frac{\left(\frac{5}{4}\right)+\left(\frac{1}{2}\right)-\left(\frac{4}{3}\right)}{\left(\frac{\sqrt{3}}{2}\right)+1}$
$=\frac{\left(\frac{15+6-16}{12}\right)}{\left(\frac{\sqrt{3}+2}{2}\right)}$
$=\frac{5}{12} \times \frac{2}{\sqrt{3}+1}$
$=\frac{5}{6} \times \frac{1}{\sqrt{3}+2}$

Question 5 A 

Prove the following :
$\frac{(1-\cos B)(1+\cos B)}{(1-\sin B)(1+\sin B)}=\frac{1}{3}$ When B = 30°
Sol :
Solving, L.H.S.
$=\frac{(1)^{2}-(\cos B)^{2}}{(1)^{2}-(\sin B)^{2}}$ [(a)2 – (b)2 = (a+b)(a-b)]
$=\frac{1-\cos ^{2} B}{1-\sin ^{2} B}$

We know that,
$\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\sin \left(30^{\circ}\right)=\frac{1}{2}$

Putting the values, we get
$=\frac{1-\left(\frac{\sqrt{3}}{2}\right)^{2}}{1-\left(\frac{1}{2}\right)^{2}}$
$=\frac{1-\frac{3}{4}}{1-\frac{1}{4}}$
$=\frac{4-3}{4-1}$
$=\frac{1}{3}$
=R.H.S.
Hence Proved

Question 5 B 

Prove the following :
$\frac{(1-\cos \alpha)(1+\cos \alpha)}{(1-\sin \alpha)(1+\sin \alpha)}=3$ When α =60°
Sol :
Solving, L.H.S.
$=\frac{(1)^{2}-(\cos \alpha)^{2}}{(1)^{2}-(\sin \alpha)^{2}}$ [(a)2 – (b)2 = (a+b)(a-b)]
$=\frac{1-\cos ^{2} \alpha}{1-\sin ^{2} \alpha}$

We know that
$\cos \left(60^{\circ}\right)=\frac{1}{2}$
$\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$

Putting the values, we get
$=\frac{1-\left(\frac{1}{2}\right)^{2}}{1-\left(\frac{\sqrt{3}}{2}\right)^{2}}$
$=\frac{1-\frac{1}{4}}{1-\frac{3}{4}}$
$=\frac{4-1}{4-3}$
= 3 = R.H.S.

Question 5 C 

Prove the following :
cos(A – B) = cos A. cos B + sinA . sin B if A=B=60o
Sol :
Solving, L.H.S.
= cos (60o – 60o) [Putting the value A=B=60o]
= cos (0o)
= 1
Solving, R.H.S.
= cos (60o) × cos (60o) + sin (60o) × sin (60o) [Putting the value A=B=60o]
= cos2(60o) + sin2(60o)

We know that,
$\cos \left(60^{\circ}\right)=\frac{1}{2}$
$\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$
$=\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}$
$=\frac{1}{4}+\frac{3}{4}$
$=\frac{1+3}{4}$
= 1
∴ LHS = RHS
Hence Proved

Question 5 D 

Prove the following :
4(sin430° + cos4 60°) – 3(cos2 45° – sin290°) = 2
Sol :
We know that,
$\sin \left(30^{\circ}\right)=\frac{1}{2}$
$\cos \left(60^{\circ}\right)=\frac{1}{2}$
$\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
Sin (90o) = 1

Now solving, L.H.S.

= 4[{(sin 30o)2}2 + {(cos 60o)2}2] – 3[(cos 45o)2 - (sin 90o)2]

Putting the values
$=4 \times\left[\left\{\left(\frac{1}{2}\right)^{2}\right\}^{2}+\left\{\left(\frac{1}{2}\right)^{2}\right\}^{2}\right]-3\left[\left(\frac{1}{\sqrt{2}}\right)^{2}-1\right]$
$=4 \times\left[\left\{\frac{1}{4}\right\}^{2}+\left\{\frac{1}{4}\right\}^{2}\right]-3\left[\frac{1}{2}-1\right]$
$=4 \times\left[\frac{1}{16}+\frac{1}{16}\right]-3\left[-\frac{1}{2}\right]$
$=4 \times\left[\frac{1}{8}\right]-3\left[-\frac{1}{2}\right]$
$=\left[\frac{1}{2}\right]+\left[\frac{3}{2}\right]$
$=\left[\frac{4}{2}\right]$
=2 = R.H.S.
Hence Proved

Question 5 E 

Prove the following :
sin90° = 2sin45°.cos45°
Sol :
We know that,
sin (90o) = 1
$\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
$\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$

Taking LHS = sin 90° = 1

Now, taking RHS
$=2 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}$
$=2 \times \frac{1}{2}$
= 1
= R.H.S.
Hence Proved

Question 5 F 

Prove the following :
cos60° = 2cos230° – 1 = 1 – 2 sin230°
Sol :
We know that,
$\cos \left(60^{\circ}\right)=\frac{1}{2}$
$\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\sin \left(30^{\circ}\right)=\frac{1}{2}$

Taking LHS = cos 60° $=\frac{1}{2}$

Now, solving RHS = 2cos2 30° - 1 , we get
$=2 \times\left(\frac{\sqrt{3}}{2}\right)^{2}-1$
$=2 \times \frac{3}{4}-1$
$=\frac{3}{2}-1$
$=\frac{3}{2}-1$
$=\frac{1}{2}$
= RHS

Now taking RHS = 1- 2sin2 30°
$=1-2\left(\frac{1}{2}\right)^{2}$
$=1-\frac{1}{2}$
$=\frac{2-1}{2}$
$=\frac{1}{2}$
= RHS
Hence, proved.

Question 5 G 

Prove the following :
cos90° = 1 – 2 sin245° = 2cos245° – 1
Sol :
We know that
cos(90o) = 0
$\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
$\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$

taking LHS = cos 90° = 0

Now solving RHS 1- 2sin2 45°
$=1-2\left(\frac{1}{\sqrt{2}}\right)^{2}$
$=1-2 \times \frac{1}{2}$
= 1- 1
= 0
= RHS

Now, solving RHS = 2cos2 45° - 1 , we get
$=1-2 \times\left(\frac{1}{\sqrt{2}}\right)^{2}$
$=1-2 \times \frac{1}{2}$
= 1- 1
= 0
Hence, proved.

Question 5 H 

Prove the following :
sin30°.cos60° + cos30°.sin60° = sin90°
Sol :
We know that
$\sin \left(30^{\circ}\right)=\frac{1}{2}$
$\cos \left(60^{\circ}\right)=\frac{1}{2}$
$\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$

sin (90o) = 1

Taking LHS =
$=\left[\left(\frac{1}{2}\right) \times\left(\frac{1}{2}\right)\right]+\left[\left(\frac{\sqrt{3}}{2}\right) \times\left(\frac{\sqrt{3}}{2}\right)\right]$
$=\left[\left(\frac{1}{4}\right)\right]+\left[\left(\frac{3}{4}\right)\right]$
$=\left[\frac{1+3}{4}\right]$
= 1

Now, RHS = sin 90° = 1
∴ LHS = RHS
Hence, proved.

Question 5 I 

Prove the following :
cos60°.cos30° – sin60°. sin30° = cos 90°
Sol :
We know that
$\cos \left(60^{\circ}\right)=\frac{1}{2}$
$\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\sin \left(30^{\circ}\right)=\frac{1}{2}$
cos(90o) = 0

Taking LHS
$=\left[\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)\right]-\left[\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)\right]$
$=\left[\left(\frac{\sqrt{3}}{4}\right)\right]-\left[\left(\frac{\sqrt{3}}{4}\right)\right]$
= 0

Now, RHS = cos 90° = 0

∴ LHS =RHS
Hence, proved.

Question 5 J 

Prove the following :
$\cos 60^{\circ}=\frac{1-\tan ^{2} 30^{\circ}}{1+\tan ^{2} 30^{\circ}}$
Sol :
We know that,
$\cos \left(60^{\circ}\right)=\frac{1}{2}$
$\tan \left(30^{\circ}\right)=\frac{1}{\sqrt{3}}$

Taking LHS = $\cos 60^{\circ}=\frac{1}{2}$

Now, solving RHS
$=\frac{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}{1+\left(\frac{1}{\sqrt{3}}\right)^{2}}$
$=\frac{1-\frac{1}{3}}{1+\frac{1}{3}}$
$=\frac{\frac{3-1}{3}}{\frac{3+1}{3}}$
$=\frac{2}{4}$
$=\frac{1}{2}$
∴ L.H.S. = R.H.S.
Hence, proved.

Question 5 K 

Prove the following :
$\frac{\tan 60^{\circ}-\tan 30^{\circ}}{1+\tan 60^{\circ} \cdot \tan 30^{\circ}}=\tan 30^{\circ}$
Sol :
We know that
tan(60o) = √3
$\tan \left(30^{\circ}\right)=\frac{1}{\sqrt{3}}$

Taking LHS
$=\frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{1+(\sqrt{3}) \times\left(\frac{1}{\sqrt{3}}\right)}$
$=\frac{\frac{3-1}{\sqrt{3}}}{1+1}$
$=\frac{\frac{2}{\sqrt{3}}}{2}$
$=\frac{1}{\sqrt{3}}$

Now, RHS $=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$

∴L.H.S. = R.H.S.
Hence, proved.

Question 5 L 

Prove the following :
$\frac{1-\tan 30^{\circ}}{1+\tan 30^{\circ}}=\frac{1-\sin 60^{\circ}}{\cos 60^{\circ}}$
Sol :
$\tan \left(30^{\circ}\right)=\frac{1}{\sqrt{3}}$
$\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\cos \left(60^{\circ}\right)=\frac{1}{2}$

Taking LHS
$=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}$
$=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}}$
$=\frac{\sqrt{3}-1}{\sqrt{3}+1}$

Multiplying and Dividing, LHS by (√3- 1)
$=\frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}$
$=\frac{(\sqrt{3}-1)^{2}}{(\sqrt{3})^{2}-(1)^{2}}$ [(a)2 – (b)2 = (a+b)(a-b)]
$=\frac{(\sqrt{3}-1)^{2}}{(\sqrt{3})^{2}-(1)^{2}}$
$=\frac{3+1-2 \sqrt{3}}{3-1}$
$=\frac{4-2 \sqrt{3}}{2}$

Multiplying and Dividing, LHS by 2
= 2- √3

Now, RHS
$=\frac{1-\frac{\sqrt{3}}{2}}{\frac{1}{2}}$
$=\frac{\frac{2-\sqrt{3}}{2}}{\frac{1}{2}}$
= 2- √3

∴ LHS = RHS
Hence, proved.

Question 5 M 

Prove the following :
$\frac{\sin 60^{\circ}+\cos 30^{\circ}}{\sin 30^{\circ}+\cos 60^{\circ}+1}=\cos 30^{\circ}$
Sol :
We know that
$\sin \left(30^{\circ}\right)=\frac{1}{2}$
$\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\cos \left(60^{\circ}\right)=\frac{1}{2}$

Taking LHS
$=\frac{\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}}{\frac{1}{2}+\frac{1}{2}+1}$
$=\frac{2 \times \frac{\sqrt{3}}{2}}{\frac{1+1+2}{2}}$
$=\frac{\sqrt{3}}{2}$

Now, RHS= $\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
∴ LHS =RHS

Hence Proved

Question 5 N 

Prove the following :
$\sin 60^{\circ}=2 \sin 30^{\circ} \cdot \cos 30^{\circ}=\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}$
Sol :
We know that
$\sin \left(30^{\circ}\right)=\frac{1}{2}$
$\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\tan \left(30^{\circ}\right)=\frac{1}{\sqrt{3}}$

Taking LHS $=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$

Now, solving RHS = 2 sin 30° cos 30°
$=2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2}$
$=\frac{\sqrt{3}}{2}$
= LHS

Now, RHS$=\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}$
$=\frac{2\left(\frac{1}{\sqrt{3}}\right)}{1+\left(\frac{1}{\sqrt{3}}\right)^{2}}$
$=\frac{\frac{2}{\sqrt{3}}}{1+\frac{1}{3}}$
$=\frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}}$
$=\frac{2}{\sqrt{3}} \times \frac{3}{4}$
$=\frac{\sqrt{3}}{2}$
∴ LHS =RHS
Hence proved

Question 6A 

If A=60o and B = 30o, verify that :
cos (A+B) = cos A cos B – sin A sin B
Sol :
Given: A=60o and B =30o
Now, LHS = Cos (A+B)
⇒ Cos (60 o + 30 o)
⇒ Cos (90 o)
⇒ 0 [∵ cos 90 o = 0]
Now, RHS = Cos A Cos B – Sin A Sin B
⇒ cos(60 o) cos(30 o) – sin(60 o) sin (30 o)
$\Rightarrow\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)$
⇒ 0
∴ LHS = RHS
Hence Proved

Question 6 B 

If A=60o and B = 30o, verify that :
sin (A – B) = sin A cos B – cos A sin B
Sol :
Given: A=60o and B =30o
Now, LHS = Sin (A-B)
⇒ Sin (60 o - 30 o)
⇒ Sin (30 o)
$\Rightarrow\left(\frac{1}{2}\right)$

Now, RHS = Sin A Cos B – Cos A Sin B

⇒ sin(60 o) cos(30 o) – cos(60 o) sin (30 o)
$\Rightarrow\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$
$\Rightarrow \frac{3}{4}-\frac{1}{4}$
$\Rightarrow\left(\frac{1}{2}\right)$
∴ LHS = RHS
Hence Proved

Question 6 C 

If A=60o and B = 30o, verify that :
tan (A – B) $=\frac{\tan A-\tan B}{1+\tan A \tan B}$
Sol :
Given: A=60o and B =30o
Now, LHS = tan (A-B)
⇒ tan (60 o - 30 o)
⇒ tan (30 o)
$\Rightarrow\left(\frac{1}{\sqrt{3}}\right)$

Now, RHS $=\frac{\tan A-\tan B}{1+\tan A \tan B}$
$=\frac{\tan 60^{\circ}-\tan 30^{\circ}}{1+\tan 60^{\circ} \tan 30^{\circ}}$
$\Rightarrow \frac{\sqrt{3}-\left(\frac{1}{\sqrt{3}}\right)}{1+(\sqrt{3})\left(\frac{1}{\sqrt{3}}\right)}$
$\Rightarrow \frac{\frac{3-1}{\sqrt{3}}}{1+1}$
$\Rightarrow\left(\frac{1}{\sqrt{3}}\right)$
∴ LHS = RHS
Hence Proved

Question 7 A 

If A = 30o, verify that :
sin 2A = 2 sin A cos A
Sol :
Given: A =30o
Now, LHS = sin 2(30o)
⇒ sin 60o
$\Rightarrow \frac{\sqrt{3}}{2}$

Now, RHS = 2 sin A cos A
⇒ 2 sin (30o) cos (30o)
$\Rightarrow 2\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$
$\Rightarrow \frac{\sqrt{3}}{2}$
∴ LHS = RHS
Hence Proved

Question 7 B 

If A = 30o, verify that :
cos 2A = 1-2 sin2A=2cos2 A – 1
Sol :
Given: A =30o

Now, LHS = cos 2(30o)
⇒ cos 60o
$\Rightarrow \frac{1}{2}$

Now, RHS = 1- 2sin2 A
⇒ 1- 2sin2 (30o)
$\Rightarrow 1-2\left(\frac{1}{2}\right)^{2}$
$\Rightarrow 1-2\left(\frac{1}{4}\right)$
$\Rightarrow \frac{2-1}{2}$
$\Rightarrow \frac{1}{2}$

Now, RHS = 2cos2 A – 1
⇒ 2cos2 (30o) - 1
$\Rightarrow 2\left(\frac{\sqrt{3}}{2}\right)^{2}-1$
$\Rightarrow 2\left(\frac{3}{4}\right)-1$
$\Rightarrow \frac{3-2}{2}$
$\Rightarrow \frac{1}{2}$

∴ LHS = RHS
Hence Proved

Question 8 A 

If θ = 30°, verify that :
sin 3θ = 3 sinθ – 4 sin3θ
Sol :
Given: θ =30o
Now, LHS = sin 3(30o)
⇒ sin 90o
= 1
Now, RHS = 3 sin θ - 4 sin3 θ
⇒ 3 sin (30o) - 4 sin3 (30o)
$\Rightarrow 3\left(\frac{1}{2}\right)-4\left(\frac{1}{2}\right)^{3}$
$\Rightarrow \frac{3}{2}-\frac{1}{2}$
= 1
∴ LHS = RHS
Hence Proved

Question 8 B 

If θ = 30°, verify that :
cos3θ = 4cos3θ – 3cosθ
Sol :
Given: θ =30o
Now, LHS = cos 3(30o)
⇒ cos 90o
= 0
Now, RHS = 4 cos3 θ - 3 cos θ
⇒ 4 cos3 (30o) - 3 cos (30o)
$\Rightarrow 4\left(\frac{\sqrt{3}}{2}\right)^{3}-3\left(\frac{\sqrt{3}}{2}\right)$
$\Rightarrow\left(\frac{3 \sqrt{3}}{2}\right)-\left(\frac{3 \sqrt{3}}{2}\right)$
= 0
∴ LHS = RHS
Hence Proved

Question 9 

If sin (A + B) = 1 and cos (A – B) = $\frac{\sqrt{3}}{2}$, then find A and B.
Sol :
Given : sin (A+B) =1
⇒ Sin(A+B) = sin (90 o) [∵ sin (90 o)=1]
On equating both the sides, we get
A + B = 90 o …(1)
And $\cos (A-B)=\frac{\sqrt{3}}{2}$
⇒ cos(A – B) = cos (30 o) $\left[\because \cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}\right]$

On equating both the sides, we get
A – B = 30 o …(2)

On Adding Eq. (1) and (2), we get
2A = 120 o
⇒ A = 60 o

Now, Putting the value of A in Eq.(1), we get
60 o + B =90 o
⇒ B = 30 o

Hence, A = 60 o and B = 30 o

Question 10 

If sin (A + B) = 1 and cos (A – B) = 1, find A and B.
Sol :
Given : sin (A+B) =1
⇒ Sin(A+B) = sin (90 o) [∵ sin (90 o) =1]
On equating both the sides, we get
A + B = 90 o …(1)
And cos (A – B) = 1
⇒ cos(A – B) = cos (0 o) [∵ cos(0 o) = 1]
On equating both the sides, we get
A – B = 0 o …(2)
On Adding Eq. (1) and (2), we get
2A = 90 o
⇒ A = 45 o
Now, Putting the value of A in Eq.(1), we get
45 o + B =90 o
⇒ B = 45 o
Hence, A = 45 o and B = 45 o

Question 11 

If sin (A + B) = cos (A – B) = $\frac{\sqrt{3}}{2}$, fins A and B.
Sol :
Given : $\sin (A+B)=\frac{\sqrt{3}}{2}$
⇒ Sin(A+B) = sin (60 o) $\left[\because \sin (60 ^{\circ})=\frac{\sqrt{3}}{2}\right]$

On equating both the sides, we get
A + B = 60 o …(1)
And $\cos (A-B)=\frac{\sqrt{3}}{2}$

⇒ cos(A – B) = cos (30 o) $\left[\because \cos (30^{\circ})=\frac{\sqrt{3}}{2}\right]$

On equating both the sides, we get
A – B = 30 o …(2)

On Adding Eq. (1) and (2), we get
2A = 90 o
⇒ A = 45 o

Now, Putting the value of A in Eq.(1), we get
45 o + B =60 o
⇒ B = 15 o
Hence, A = 45 o and B = 15 o

Question 12 

If sin (A – B) = 1/2, cos(A + B) = 1/2; 0o<A+B<90o; A > B, find A and B.
Sol :
Given : $\sin (A-B)=\frac{1}{2}$
⇒ Sin(A-B) = sin (30 o) $\left[\because \sin (30^{\circ})=\frac{1}{2}\right]$

On equating both the sides, we get
A - B = 30 o …(1)
And $\cos (A+B)=\frac{1}{2}$

⇒ cos(A + B) = cos (60 o) $\left[\because \cos (60^{\circ})=\frac{1}{2}\right]$

On equating both the sides, we get
A + B = 60 o …(2)

On Adding Eq. (1) and (2), we get
2A = 90 o
⇒ A = 45 o

Now, Putting the value of A in Eq.(2), we get
45 o + B =60 o
⇒ B = 15 o
Hence, A = 45 o and B = 15 o

Question 13 A 

Show by an example that
cos A – cos B ≠ cos (A – B)
Sol :
Let A = 60o and B = 30o, then
L.H.S. =cos A-cosB
=cos60°-cos30°
$=\frac{1}{2}-\frac{\sqrt{3}}{2}=\frac{1-\sqrt{3}}{2}$

R. H. S=cos(A-B)
=cos(60°-30°)
$=\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
 
∴ L.H.S. R.H.S

Question 13 B 

Show by an example that
cos C + cos D ≠ cos (C + D)
Sol :
Let C = 60o and D = 30o, then
L.H.S. = cos C + cos D = cos 60o + cos 30o
$=\frac{1}{2}+\frac{\sqrt{3}}{2}=\frac{1+\sqrt{3}}{2}$
R. H. S. = cos (C+D) = cos (60o + 30o) = cos 90o= 0
∴ L.H.S. R.H.S

Question 13 C 

Show by an example that
sin A + sin B ≠ sin (A + B)
Sol :
Let A = 60o and B = 30o, then
L.H.S. = sin A + sin B = sin 60o + sin 30o
$=\frac{\sqrt{3}}{2}+\frac{1}{2}=\frac{\sqrt{3}+1}{2}$

R. H. S. = sin (A + B) = sin (60o + 30o) = sin 90o =1
∴ L.H.S. R.H.S

Question 13 D 

Show by an example that
sin A – sin B ≠ sin (A – B)
Sol :
Let A = 60o and B = 30o, then
L.H.S. = sin A - sin B = sin 60o - sin 30o
$=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2}$

R. H. S. = sin (A - B) = sin (60o - 30o) = sin 30o
$=\frac{1}{2}$
∴ L.H.S. ≠R.H.S

Question 14 

In a right ΔABC hypotenuse AC = 10 cm and ∠A = 60°, then find the length of the remaining sides.
Sol :









Given: ∠A = 60o and AC = 10cm
Now, $\sin 60^{\circ}=\frac{\text { Perpendicular }}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{BC}}{10}$

Now, we know that $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{B C}{10}$
⇒ BC = 5√3 cm
In right angled ∆ABC , we have
⇒ (AB)2 + (BC)2 =(AC)2 [by using Pythagoras theorem]
⇒ (AB)2 + (5√3)2 = (10)2
⇒ (AB)2 +(25×3) =100
⇒ (AB)2 +75 = 100
⇒ (AB)2 = 100 – 75
⇒ (AB)2 = 25
⇒ AB =√25
⇒ AB = ±5
⇒ AB = 5cm [taking positive square root since, side cannot be negative]
∴ Length of the side AB = 5cm and BC =5√3 cm

Question 15 

In a rectangle ABCD, BD : BC = 2 : √3, then find ∠BDC in degrees.
Sol :











Given BD: BC = 2 : √3
We have to find the ∠BDC
We know that,
$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
$\Rightarrow \sin \theta=\frac{k \sqrt{3}}{2 k}$
$\Rightarrow \sin \theta=\frac{\sqrt{3}}{2}$
⇒ sin θ = sin 60o
⇒ θ = 60o

S.no Chapters Links
1 Real numbers Exercise 1.1
Exercise 1.2
Exercise 1.3
Exercise 1.4
2 Polynomials Exercise 2.1
Exercise 2.2
Exercise 2.3
3 Pairs of Linear Equations in Two Variables Exercise 3.1
Exercise 3.2
Exercise 3.3
Exercise 3.4
Exercise 3.5
4 Trigonometric Ratios and Identities Exercise 4.1
Exercise 4.2
Exercise 4.3
Exercise 4.4
5 Triangles Exercise 5.1
Exercise 5.2
Exercise 5.3
Exercise 5.4
Exercise 5.5
6 Statistics Exercise 6.1
Exercise 6.2
Exercise 6.3
Exercise 6.4
7 Quadratic Equations Exercise 7.1
Exercise 7.2
Exercise 7.3
Exercise 7.4
Exercise 7.5
8 Arithmetic Progressions (AP) Exercise 8.1
Exercise 8.2
Exercise 8.3
Exercise 8.4
9 Some Applications of Trigonometry: Height and Distances Exercise 9.1
10 Coordinates Geometry Exercise 10.1
Exercise 10.2
Exercise 10.3
Exercise 10.4
11 Circles Exercise 11.1
Exercise 11.2
12 Constructions Exercise 12.1
13 Area related to Circles Exercise 13.1
14 Surface Area and Volumes Exercise 14.1
Exercise 14.2
Exercise 14.3
Exercise 14.4
15 Probability Exercise 15.1

No comments:

Post a Comment

Contact Form

Name

Email *

Message *