KC Sinha Mathematics Solution Class 10 Chapter 6 Statistics Exercise 6.1


Exercise 6.1
Exercise 6.2
Exercise 6.3
Exercise 6.4

Exercise 6.1


Question 1 

The mean of 11 results is 30. If the mean of the first 6 results is 28 and that of last 6 results is 32, find the 6th result.
Sol :
Let the 6th number be x
Given that mean of 11 results = 30
 sum of 11 numbers = 11 × 30 = 330
Mean of the first 6 results = 28
Sum of first 6 numbers = 6 × 28 = 168
Mean of the last 6 results = 32
Sum of the last 6 results = 6 × 32 = 192
Therefore,
Sum of first 6 numbers + sum of last 6 numbers – 6th number = sum of 11 numbers
168 + 192 - x = 330
 360 – x = 330
 x = 30

Question 2 

The mean of 17 observations is 20. If the mean of the first 9 observation is 23 and that of last 9 observations is 18, find the 9th observation.
Sol :
Let the 9th observation be x
Given that mean of 17 observations = 20
 sum of 17 observations = 17 × 20 = 340
Mean of the first 9 observations= 23
Sum of first 9 observations = 9 × 23 = 207
Mean of the last 9 observations = 18
Sum of the last 9 observations = 9 × 18 = 162
Therefore,
Sum of first 9 observations + sum of last 9 observations – 9th observation = sum of 17 observations
207 + 162 - x = 340
 369 – x = 340
 x = 29

Question 3 

The mean weight of 21 students of a class is 52 kg. If the mean weight of the first 11 students of the class is 50 kg and that of the last 11 students is 54 kg, find the weight of the 11th student.
Sol :
Let the weight of 11th student be x
Given that mean weight of 21 students = 52kg
 sum of 21 students weight = 21 × 52 = 1092kg
Mean weight of the first 11 students = 50kg
Sum of first 11 students weight = 11 × 50 = 550kg
Mean weight of the last 11 students = 54kg
Sum of the last 11 students weight = 11 × 54 = 594kg
Therefore,
Sum of first 11 students weight + sum of last 11 students weight – weight of the 11th student = sum of 21 students weight
550+594 - x = 1092
 1144 – x = 1092
 x = 52
Hence, weight of 11th student is 52kg

Question 4 

The mean weight of 25 students of a class is 60 kg. If the mean weight of the first 13 students of the class is 57 kg and that of the last 13 students is 63 kg, find the weight of the 13th student.
Sol :
Let the weight of 13th student be x
Given that mean weight of 25 students = 60kg
 sum of 25 students weight = 25 × 60 = 1500kg
Mean weight of the first 13 students = 57kg
Sum of first 13 students weight = 13 × 57 = 741kg
Mean weight of the last 13 students = 63kg
Sum of the last 13 students weight = 13 × 63 = 819kg
Therefore,
Sum of first 13 students weight + sum of last 13 students weight – weight of the 13th student = sum of 25 students weight
741 + 819 - x = 1500
 1560 – x = 1500
 x = 60
Hence, weight of 13th student is 60kg

Question 5

The mean of 23 observations is 34. If the mean of the first 12 observations is 32 and that of the last 12 observations is 38, find the 12th observation.
Sol :
Let the 12th observation be x
Given that mean of 23 observations = 34
 sum of 23 observations = 23 × 34 = 782
Mean of the first 12 observations = 32
Sum of first 12 observations = 12 × 32 = 384
Mean of the last 12 observations = 38
Sum of the last 12 observations = 12 × 38 = 456
Therefore,
Sum of first 12 observations + sum of last 12 observations – 12th observation = sum of 23 observations
384 + 456 - x = 782
 840 – x = 782
 x = 58

Question 6 

The mean of 11 numbers is 35. If the mean of first 6 numbers is 32 and that of last 6 numbers is 37, find the 6th number.
Sol :
Let the 6th number be x
Given that mean of 11 results = 35
 sum of 11 numbers = 11 × 35 = 385
Mean of the first 6 results = 32
Sum of first 6 numbers = 6 × 32 = 192
Mean of the last 6 results = 37
Sum of the last 6 results = 6 × 37 = 222
Therefore,
Sum of first 6 numbers + sum of last 6 numbers – 6th number = sum of 11 numbers
192 + 222 - x = 385
 414 – x = 385
 x = 29

Question 7 

The mean of 25 observations is 36. If the mean of the first 13 observations is 32 and that of the last 13 observations is 39, find the 13th observation.
Sol :
Let the 13th observation be x
Given that mean of 25 observations = 36
 sum of 25 observations = 25 × 36 = 900
Mean of the first 13 observations = 32
Sum of first 13 observations = 13 × 32 = 416
Mean of the last 13 observations = 39
Sum of the last 13 observations = 13 × 39 = 507
Therefore,
Sum of first 13 observations + sum of last 13 observations – 13th observation = sum of 25 observations
416 + 507 - x = 900
 923 – x = 900
 x = 23

Question 8 

If the mean of the following data is 25, find the value of k.
x 5 15 25 35 45
f 3 k 3 6 2
Sol :
xi fi xifi
5 5 15
15 K 15k
25 3 75
35 6 210
45 2 90
Total Σfi=14+k Σfixi=390+15k

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 25=\frac{390+15 k}{14+k}$
25(14+k) = 390+ 15k
350 + 25k = 390 + 15k
 25k – 15k = 390 – 350
 10k = 40
 k = 4

Question 9 

Find the arithmetic mean of the following distribution:
Marks obtained 10 15 20 25 30
No. of students 2 4 6 8 10
Sol :
Marks obtained
(xi)
No. of student
(fi)
xifi
10 2 20
15 4 60
20 6 120
25 8 200
30 10 300
Total Σfi=30 Σfixi=700

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\Sigma \mathrm{f}_{\mathrm{i}}}=\frac{700}{30}=23.33$

Question 10 

The mean of the following frequency distribution is 62.8. Find the missing frequency x:
Class 0-20 20-40 40-60 60-80 80-100 100-120
Frequency 5 8 x 12 7 8
Sol :

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 62.8=\frac{2640+50 \mathrm{x}}{40+\mathrm{x}}$
62.8 (40 + x) = 2640 + 50x
2512 + 62.8x = 2640 + 50x
 62.8x – 50x = 2640 – 2512
 12.8x = 128
 x = 10

Question 11 

The arithmetic mean of the following data is 14. Find the value of p:
x 5 10 15 20 25
f 7 p 8 4 5
Sol :
(xi)
(fi)
xifi
5 7 35
10 p 10p
15 8 120
20 4 80
25 5 125
Total Σfi=24+p Σfixi=360+10p

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 14=\frac{360+10 p}{24+p}$
14 (24+p) = 360 + 10p
336 + 14p = 360 + 10p
 14p – 10p = 360 – 336
 4p = 24
 p = 6

Question 12 

If the mean of the following data is 18, find the missing frequency p:
x 10 15 20 25
f 5 10 p 8
Sol :
(xi)
(fi)
xifi
10 5 50
15 10 150
20 p 20p
25 8 200
Total Σfi=23+p Σfixi=400+20p

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 18=\frac{400+20 p}{23+p}$
18 (23 + p) = 400 + 20p
414 + 18p = 400 + 20p
 18p – 20p = 400 – 414
 -2p = -14
 p = 7

Question 13  

Find the value of p if the mean of the following distribution is 7.5:
x 3 5 7 9 11 13
f 6 8 15 p 8 4
Sol :

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 7.5=\frac{303+9 p}{41+p}$
7.5(41+p) = 303 + 9p
307.5 + 7.5p = 303 + 9p
 7.5p – 9p = 303 – 307.5
 -1.5p = -4.5
 p = 3

Question 14 

Find the mean of the following data:
Class interval 0-10 10-20 20-30 30-40 40-50
Frequency 12 11 8 10 9
Sol :

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{1180}{50}=23.6$

Question 15 

Find the mean of the following distribution:

Sol :

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{1992}{100}=19.92$

Question 16 

The arithmetic mean of the following frequency distribution is 53. Find the value of p:
Class 0-20 20-40 40-60 60-80 80-100
Frequency 12 15 32 p 13
Sol :

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 53=\frac{1900+70 p}{72+p}$
53 (72+p) = 3340 + 70p
3816 + 53p = 3340 + 70p
 53p – 70p = 3340 – 3816
 -17p = -476
 p = 28

Question 17 

If the mean of the following distribution is 5. Find the value of f1:
Class 0-20 20-40 40-60 60-80 80-100
Frequency 17 28 32 f1 19
Sol :

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 5=\frac{4320+70 f_{1}}{96+f_{1}}$
 5(96+ f1) = 4320 + 70f1
480 + 5f1 = 4320 + 70f1
 5f1 – 70f1 = 4320 - 480
 -65f1 = +3840
 f1 = - 59.07
This is not possible as frequency can not be negative.

Question 18 

Find the mean of the following frequency distribution:
Class 0-20 20-40 40-60 60-80 80-100
Frequency 15 18 21 29 17
Sol :

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\Sigma \mathrm{f}_{\mathrm{i}}}=\frac{5300}{100}=53$

Question 19  

The mean of the following frequency distribution is 62.8 and the sum of all frequency is 50. Compute the missing frequency f1 and f2 :
Class 0-20 2040 40-60 60-80 80-100 100-120 Total
Frequency 5 f1 10 f2 7 8 50
Sol :

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 62.8=\frac{2060+30 f_{1}+70 f_{2}}{50}$ [given: ∑fi = 50]
 62.8(50) = 2060 + 30f1 +70f2
 3140 = 2060 + 30f1 +70f2
 3140 - 2060 = 30f1 +70f2
 1080 = 30f1 +70f2
 108 = 3f1 +7f2 …(i)
and 30 + f1 +f2 = 50
 f1 +f2 = 50 – 30
 f1 +f2 = 20
 f1 = 20 – f2 …(ii)
Now, putting the value of f1 in eq. (i), we get
3(20 –f2) + 7f2 = 108
 60 – 3f2 + 7f2 = 108
 4f2 = 108 – 60
 4f2 = 48
 f2 = 12
Now, substitute the value of f2 in eq. (ii), we get
f1 = 20 – 12
 f1 = 8

Question 20 

The mean of the following frequency distribution is 57.6 and the sum of the frequencies is 50. Find the missing frequencies f1 and f2 :
Class 0-20 20-40 40-60 60-80 80-100 100-120
Frequency 7 f1 12 f2 8 5
Sol :

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 57.6=\frac{2060+30 f_{1}+70 f_{2}}{50}$ [given: ∑fi = 50]
 57.6(50) = 1940 + 30f1 +70f2
 2880 = 1940 + 30f1 +70f2
 2880 – 1940 = 30f1 +70f2
 940 = 30f1 +70f2
 94 = 3f1 +7f2 …(i)
and 32 + f1 +f2 = 50
 f1 +f2 = 50 – 32
 f1 +f2 = 18
 f1 = 18 – f2 …(ii)
Now, putting the value of f1 in eq. (i), we get
3(18 –f2) + 7f2 = 94
 54 – 3f2 + 7f2 = 94
 4f2 = 94 – 54
 4f2 = 40
 f2 = 10
Now, substitute the value of f2 in eq. (ii), we get
f1 = 18 – 10
 f1 = 8

Question 21 

Find the mean of the following data:
Class Interval 50-60 60-70 70-80 80-90 90-100
Frequency 8 6 12 11 13
Sol :

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{3900}{50}=78$

Question 22 

Find the mean of the following frequency distribution:
Class Interval 15-25 25-35 35-45 45-55 55-56
Frequency 60 35 22 18 15
Sol :

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{4930}{150}=32.87$

Question 23 

Find the mean of the following frequency distribution:
Class 50-60 70-90 90-110 110-130 130-150 150-170
Frequency 18 12 13 27 8 22
Sol :
Here, the class size varies, and xi’s are large. Now, we apply the step deviation method with a = 120 and h = 20

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{x}}=120+20\left(\frac{-39}{100}\right)$
$\Rightarrow \overline{\mathrm{x}}=120+\left(\frac{-78}{10}\right)$
$\Rightarrow \overline{\mathrm{x}}=\frac{1200-78}{10}$
 $\overline{\mathrm{x}}$= 112.2

Question 24 

Find the mean of the following frequency distribution:
Class 25-29 30-34 35-39 40-44 45-49 50-54 55-59
Frequency 14 22 16 6 5 3 4
Sol :
Here, we can see that the class interval is not continuous. So, we make it continuous.

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{x}}=42+5\left(\frac{-79}{70}\right)$
$\Rightarrow \bar{x}=\frac{2940-395}{70}$
 x̄ = 36.36

Question 25 

The following table gives the marks scored by 50 students in a class-test:
Marks 0-100 100-200 200-300 300-400 400-500 500-600
No. of students 2 8 12 20 5 3

Find the mean marks scored by a student in the class-test.
Sol :
Here, the xi’s are large. Now, we apply the step deviation method with a = 350 and h = 100

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\Sigma \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \bar{x}=350+100\left(\frac{-23}{50}\right)$
x̄ = 350 - 46
x̄ = 304
Hence, the mean marks scored by a student in the class-test is 304

Question 26 

Find the mean of the following data:
Class Interval 0-10 10-20 20-30 30-40 40-50
Frequency 3 5 9 5 3
Sol :

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{625}{25}=25$

Question 27 

Find the mean of the following data:
Class Interval 0-100 100-200 200-300 300-400 400-500
Frequency 6 9 15 12 8
Sol :
Here, the xi’s are large. Now, we apply the step deviation method with a = 250 and h = 100

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{x}}=250+100\left(\frac{7}{50}\right)$
x̄ = 250 + 14
x̄ = 264

Question 28 

The following table gives the marks scored by 80 students in a class-test:
Marks 0-50 50-100 100-150 150-200 200-250 250-300
No. of students 8 12 20 25 10 5
Find the mean marks scored by a student in the class-test.
Sol :
Here, the xi’s are large. Now, we apply the step deviation method with a = 175 and h = 50

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\Sigma \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \bar{x}=175+50\left(\frac{-48}{80}\right)$
x̄ = 175 - 30
x̄ = 145
Hence, the mean marks scored by a student in the class-test is 145

Question 29 

The following table gives the distribution of expenditure of different families on education. Find the mean expenditure on education of a family:
Expenditure
(in Rs)
Number of Families
1000-1500 24
1500-2000 40
2000-2500 33
2500-3000 28
3000-3500 30
3500-4000 22
4000-4500 16
4500-5000 7
Sol :
Here, the xi’s are large. Now, we apply the step deviation method with a = 3250 and h = 500

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\Sigma \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \bar{x}=3250+500\left(\frac{-235}{200}\right)$
x̄ = 3250 – 587.5
x̄ = 2662.5
Hence, the mean expenditure on education of a family is Rs 2662.5


S.no Chapters Links
1 Real numbers Exercise 1.1
Exercise 1.2
Exercise 1.3
Exercise 1.4
2 Polynomials Exercise 2.1
Exercise 2.2
Exercise 2.3
3 Pairs of Linear Equations in Two Variables Exercise 3.1
Exercise 3.2
Exercise 3.3
Exercise 3.4
Exercise 3.5
4 Trigonometric Ratios and Identities Exercise 4.1
Exercise 4.2
Exercise 4.3
Exercise 4.4
5 Triangles Exercise 5.1
Exercise 5.2
Exercise 5.3
Exercise 5.4
Exercise 5.5
6 Statistics Exercise 6.1
Exercise 6.2
Exercise 6.3
Exercise 6.4
7 Quadratic Equations Exercise 7.1
Exercise 7.2
Exercise 7.3
Exercise 7.4
Exercise 7.5
8 Arithmetic Progressions (AP) Exercise 8.1
Exercise 8.2
Exercise 8.3
Exercise 8.4
9 Some Applications of Trigonometry: Height and Distances Exercise 9.1
10 Coordinates Geometry Exercise 10.1
Exercise 10.2
Exercise 10.3
Exercise 10.4
11 Circles Exercise 11.1
Exercise 11.2
12 Constructions Exercise 12.1
13 Area related to Circles Exercise 13.1
14 Surface Area and Volumes Exercise 14.1
Exercise 14.2
Exercise 14.3
Exercise 14.4
15 Probability Exercise 15.1

No comments:

Post a Comment

Contact Form

Name

Email *

Message *