KC Sinha Mathematics Solution Class 10 Chapter 8 Arithmetic Progressions Exercise 8.3


Exercise 8.1
Exercise 8.2
Exercise 8.3
Exercise 8.4

Exercise 8.3


Question 1

Three numbers are in A.P. Their sum is 27 and the sum of their squares is 275. Find the numbers.
Sol :
Let the three numbers are in AP = a, a + d, a + 2d
According to the question,
The sum of three terms = 27
 a + (a + d) + (a + 2d) = 27
 3a + 3d = 27
 a + d = 9
 a = 9 – d …(i)
and the sum of their squares = 275
 a2 + (a + d)2 + (a + 2d)2 = 275
 (9 – d)2 + (9)2 + ( 9 – d + 2d)2 = 275 [from(i)]
 81 + d2 – 18d + 81 + 81 + d2 + 18d = 275
 243 + 2d2 = 275
 2d2 = 275 – 243
 2d2 = 32
 d2 = 16
 d = √16
 d = ±4
Now, if d = 4, then a = 9 – 4 = 5
and if d = – 4, then a = 9 – ( – 4) = 9 + 4 = 13
So, the numbers are 
if a = 5 and d = 4
5, 9, 13
and if a = 13 and d = – 4
13, 9, 5

Question 2

The sum of three numbers in A.P. is 12 and the sum of their cubes is 408. Find the numbers.
Sol :
Let the three numbers are in AP = a, a + d, a + 2d
According to the question,
The sum of three terms = 12
 a + (a + d) + (a + 2d) = 12
 3a + 3d = 12
 a + d = 4
 a = 4 – d …(i)
and the sum of their cubes = 408
 a3 + (a + d)3 + (a + 2d)3 = 408
 (4 – d)3 + (4)3 + ( 4 – d + 2d)3 = 408 [from(i)]
 (4 – d)3 + (4)3 + ( 4 + d)3 = 408
 64 – d3 + 12d2 – 48d + 64 + 64 + d3 + 12d2 + 48d = 408
 192 + 24d2 = 408
 24d2 = 408 – 192
 24d2 = 216
 d2 = 9
 d = √9
 d = ±3
Now, if d = 3, then a = 4 – 3 = 1
and if d = – 3, then a = 4 – ( – 3) = 4 + 3 = 7
So, the numbers are 
if a = 1 and d = 3
1, 4, 7
and if a = 7 and d = – 3
7, 4, 1

Question 3 A

Divide 15 into three parts which are in A.P. and the sum of their squares is 83.
Sol :
Let the middle term = a and the common difference = d
The first term = a – d and the succeeding term = a + d
So, the three parts are a – d, a, a + d
According to the question,
Sum of these three parts = 15
 a – d + a + a + d = 15
 3a = 15
 a = 5
and the sum of their squares = 83
 (a – d)2 + a2 + (a + d)2 = 83
 (5 – d)2 + (5)2 + ( 5 + d)2 = 83 [from(i)]
 25 + d2 – 10d + 25 + 25 + d2 + 10d = 83
 75 + 2d2 = 83
 2d2 = 83 – 75
 2d2 = 8
 d2 = 4
 d = √4
 d = ±2
Case: (i) If d = 2, then
a – d = 5 – 2 = 3
a = 5
a + d = 5 + 2 = 7
Hence, the three parts are
3, 5, 7
Case: (ii) If d = – 2, then
a – d = 5 – ( – 2) = 7
a = 5
a + d = 5 + ( – 2) = 3
Hence, the three parts are
7, 5, 3

Question 3 B

Divide 20 into four parts which are in A.P. such that the ratio of the product of the first and fourth is to the product of the second and third is 2 : 3.
Sol :
Let the four parts which are in AP are
(a – 3d), (a – d), (a + d), (a + 3d)
According to question,
The sum of these four parts = 20
(a – 3d) + (a – d) + (a + d) + (a + 3d) = 20
 4a = 20
 a = 5 …(i)
Now, it is also given that
product of the first and fourth : product of the second and third = 2 : 3

i.e. (a – 3d) × (a + 3d) : (a – d) × (a + d) = 2 : 3
$\Rightarrow \frac{(a-3 d)(a+3 d)}{(a-d)(a+d)}=\frac{2}{3}$
$\Rightarrow \frac{a^{2}-9 d^{2}}{a^{2}-d^{2}}=\frac{2}{3}$ [(a – b)(a + b) = a2 – b2 ]
 3(a2 – 9d2) = 2(a2 – d2)
 3a2 – 27d2 = 2a2 – 2d2
 3a2 – 2a2 = – 2d2 + 27d2
 (5)2 = – 2d2 + 27d2 [from (i)]
 25 = 25d2
 1 = d2
 d = ±1
Case I: if d = 1 and a = 5
a – 3d = 5 – 3(1) = 5 – 3 = 2
a – d = 5 – 1 = 4
a + d = 5 + 1 = 6
a + 3d = 5 + 3(1) = 5 + 3 = 8
Hence, the four parts are
2, 4, 6, 8
Case II: if d = – 1 and a = 5
a – 3d = 5 – 3( – 1) = 5 + 3 = 8
a – d = 5 – ( – 1) = 5 + 1 = 6
a + d = 5 + ( – 1) = 5 – 1 = 4
a + 3d = 5 + 3( – 1) = 5 – 3 = 2
Hence, the four parts are
8, 4, 6, 2

Question 4 A

Sum of three numbers in A.P. is 21 and their product is 231. Find the numbers.
Sol :
Let the three numbers are (a – d), a and (a + d)
According to question,
Sum of these three numbers = 21
 a – d + a + a + d = 21
 3a = 21
 a = 7 …(i)
and it is also given that
Product of these numbers = 231
(a – d) × a × (a + d) = 231
(7 – d) × 7 × (7 + d) = 231
 7 × (72 – d2) = 231 [ (a – b)(a + b) = a2 – b2]
 7 × (49 – d2) = 231
 343 – 7d2 = 231
 – 7d2 = 231 – 343
 – 7d2 = – 112
 d2 = 16
 d = √16
 d = ±4
Case I: If d = 4 and a = 7
a – d = 7 – 4 = 3
a = 7
a + d = 7 + 4 = 11
So, the numbers are
3, 7, 11
Case II: If d = – 4 and a = 7
a – d = 7 – ( – 4) = 7 + 4 = 11
a = 7
a + d = 7 + ( – 4) = 7 – 4 = 3
So, the numbers are
11, 7, 3

Question 4 B

Sum of three numbers in A.P. is 3 and their product is — 35. Find the numbers.
Sol :
Let the three numbers are (a – d), a and (a + d)
According to question,
Sum of these three numbers = 3
 a – d + a + a + d = 3
 3a = 3
 a = 1 …(i)
and it is also given that
Product of these numbers = – 35
(a – d) × a × (a + d) = – 35
(1 – d) × 1 × (1 + d) = – 35
 1 × (12 – d2) = – 35 [ (a – b)(a + b) = a2 – b2]
 1 × (1 – d2) = – 35
 1 – d2 = – 35
 – d2 = – 35 – 1
 – d2 = – 36
 d2 = 36
 d = √36
 d = ±6
Case I: If d = 6 and a = 1
a – d = 1 – 6 = – 5
a = 1
a + d = 1 + 6 = 7
So, the numbers are
– 5, 1, 7
Case II: If d = – 6 and a = 1
a – d = 1 – ( – 6) = 1 + 6 = 7
a = 1
a + d = 1 + ( – 6) = 1 – 6 = – 5
So, the numbers are
7, 1, – 5

Question 5

If $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in A.P. and a + b + c ≠ 0, prove that $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$are in A.P.
Sol :
Given: a + b + c ≠ 0
and $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in AP

To Prove: $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in AP
if $\frac{a+b+c}{b+c}, \frac{a+b+c}{c+a}, \frac{a+b+c}{a+b}$ are in AP
[multiplying each term by a + b + c]

i.e. if $\frac{a}{b+c}+1$,$\frac{b}{c+a}+1$,$\frac{c}{a+b}+1$ are in AP
which is given to be true
Hence, $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in AP

Question 6

If a2, b2, c2 are in A.P., show that $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$are in A.P.
Sol :
a2, b2, c2 are in AP
 b2 – a2 = c2 – b2
(b – a)(b + a) = (c – b)(c + b)
$\Rightarrow \frac{b-a}{c+b}=\frac{c-b}{b+a}$
$\Rightarrow \frac{b-a}{(c+b)(c+a)}=\frac{c-b}{(b+a)(c+a)}$
$\Rightarrow \frac{b+c-c-a}{(c+b)(c+a)}=\frac{c+a-a-b}{(c+a)(b+a)}$
$\Rightarrow \frac{(b+c)-(c+a)}{(c+b)(c+a)}=\frac{(c+a)-(a+b)}{(c+a)(b+a)}$
$\Rightarrow \frac{(b+c)}{(c+b)(c+a)}-\frac{(c+a)}{(c+b)(c+a)}=\frac{(c+a)}{(c+a)(b+a)}-\frac{(a+b)}{(c+a)(b+a)}$
$\Rightarrow \frac{1}{c+a}-\frac{1}{c+b}=\frac{1}{b+a}-\frac{1}{c+a}$
$\Rightarrow \frac{1}{\mathrm{b}+\mathrm{c}}, \frac{1}{\mathrm{c}+\mathrm{a}}, \frac{1}{\mathrm{a}+\mathrm{b}}$are in A.P
$\Rightarrow \frac{a+b+c}{b+c}, \frac{a+b+c}{c+a}, \frac{a+b+c}{a+b}$ are in A.P
$\Rightarrow \frac{a}{b+c}+1, \frac{b}{c+a}+1, \frac{c}{c+a}+1$ are in A.P
$\Rightarrow \frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in A.P


Question 7 A

If a, b, c are in A.P., prove that
$\frac{1}{\mathrm{bc}}, \frac{1}{\mathrm{ca}}, \frac{1}{\mathrm{ab}}$are in A.P.
Sol :
Given: a, b, c are in AP
 b – a = c – b …(i)

To Prove: $\frac{1}{\mathrm{bc}}, \frac{1}{\mathrm{ca}}, \frac{1}{\mathrm{ab}}$ are in AP
$a_{2}-a_{1}=\frac{1}{c a}-\frac{1}{b c}$ $=\frac{b c-c a}{(c a)(b c)}=\frac{c(b-a)}{(c a)(b c)}$
$a_{3}-a_{2}=\frac{1}{a b}-\frac{1}{c a}$ $=\frac{c a-a b}{(c a)(a b)}=\frac{a(c-b)}{(c a)(a b)}$
$\Rightarrow \frac{c(b-a)}{(c a)(b c)}=\frac{a(c-b)}{(c a)(a b)}$
$\Rightarrow \frac{\mathrm{c}(\mathrm{b}-\mathrm{a})}{\mathrm{bc}}=\frac{\mathrm{a}(\mathrm{c}-\mathrm{b})}{\mathrm{ab}}$

⇒ b – a = c – b
∴a, b, c are in AP
$\therefore \frac{1}{\mathrm{bc}}, \frac{1}{\mathrm{ca}}, \frac{1}{\mathrm{ab}}$ are in AP

Question 7 B

If a, b, c are in A.P., prove that
(b + c)2 — a2, (c + a)2 — b2, (a + b)2 — c2 are in A.P.
Sol :
Given: a, b, c are in AP
Since, a, b, c are in AP, we have a + c = 2b …(i)
Now, (b + c)2 – a2, (c + a)2 – b2, (a + b)2 – c2 will be in A.P
If (b + c – a)(b + c + a), (c + a – b)(c + a + b), (a + b – c)(a + b + c) are in AP
i.e. if b + c – a, c + a – b, a + b – c are in AP
[dividing by (a + b + c)]
if (b + c – a) + (a + b – c) = 2(c + a – b)
if 2b = 2(c + a – b)
if b = c + a – b
if a + c = 2b which is true by (i)
Hence, (b + c)2 – a2, (c + a)2 – b2, (a + b)2 – c2 are in A.P

Question 7 C

If a, b, c are in A.P., prove that
$\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}}$ are in A.P.
Sol :
Given: a, b, c are in AP
Since, a, b, c are in AP, we have a + c = 2b …(i)
To Prove : $\frac{1}{\sqrt{\mathrm{b}}+\sqrt{\mathrm{c}}}, \frac{1}{\sqrt{\mathrm{c}}+\sqrt{\mathrm{a}}}, \frac{1}{\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}}$ are in AP
$\Rightarrow \frac{1}{\sqrt{\mathrm{c}}+\sqrt{\mathrm{a}}}-\frac{1}{\sqrt{\mathrm{b}}+\sqrt{\mathrm{c}}}=\frac{1}{\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}}-\frac{1}{\sqrt{\mathrm{c}}+\sqrt{\mathrm{a}}}$
$\Rightarrow \frac{\sqrt{\mathrm{b}}+\sqrt{\mathrm{c}}-\sqrt{\mathrm{c}}-\sqrt{\mathrm{a}}}{(\sqrt{\mathrm{c}}+\sqrt{\mathrm{a}})(\sqrt{\mathrm{b}}+\sqrt{\mathrm{c})}}=\frac{\sqrt{\mathrm{c}}+\sqrt{\mathrm{a}}-\sqrt{\mathrm{a}}-\sqrt{\mathrm{b}}}{(\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}})(\sqrt{\mathrm{c}}+\sqrt{\mathrm{a}})}$
$\Rightarrow \frac{\sqrt{\mathrm{b}}-\sqrt{\mathrm{a}}}{(\sqrt{\mathrm{b}}+\sqrt{\mathrm{c})}}=\frac{\sqrt{\mathrm{c}}-\sqrt{\mathrm{b}}}{(\sqrt{\mathrm{a}}+\sqrt{\mathrm{b})}}$
 (b – a)(b + a) = (c – b)(c + b)
 b – a = c – b
 2b = a + c, which is True ... from (i)
Hence, the result.

Question 8

$\frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c}$ are in A.P., show that $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$are in A.P. provided a + b + c 0
Sol :
Given: $\frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c}$ are in AP
$\therefore \frac{\mathrm{b}+\mathrm{c}-\mathrm{a}}{\mathrm{a}}+\frac{\mathrm{a}+\mathrm{b}-\mathrm{c}}{\mathrm{c}}=2\left(\frac{\mathrm{c}+\mathrm{a}-\mathrm{b}}{\mathrm{b}}\right)$
$\Rightarrow \frac{b}{a}+\frac{c}{a}-1+\frac{a}{c}+\frac{b}{c}-1=\frac{2 c}{b}+\frac{2 a}{b}-2$
$\Rightarrow \frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{b}{c}-\frac{2 c}{b}-\frac{2 a}{b}=0$

Taking LCM
b2c + c2b + a2b + ab2 – 2ac2 – 2a2c = 0
 b2c + c2b + a2b + ab2 –ac2 – ac2 – a2c – a2c = 0
(b2c – a2c) + (c2b – ac2) + (a2b – a2c) + (ab2 – ac2) = 0
 c (b – a)(b + a) + c2(b – a) + a2 (b – c) + a(b + c)(b – c) = 0
 c(b – a) {(b + a) + c} + a(b – c) {a + (b + c)} = 0
 (a + b + c){cb – ca + ab – ca} = 0

Given a + b + c ≠ 0
cb – ca + ab – ca = 0
cb – 2ca + ab = 0
$\Rightarrow \frac{1}{a}-\frac{2}{b}+\frac{1}{c}=0$
$\Rightarrow \frac{1}{\mathrm{a}}+\frac{1}{\mathrm{c}}=\frac{2}{\mathrm{b}}$
$\Rightarrow \frac{1}{\mathrm{a}}, \frac{1}{\mathrm{b}}, \frac{1}{\mathrm{c}}$are in AP
Hence Proved

Question 9

If (b – c)2, (c – a)2, (a – b)2 are in A.P., then show that: $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$are in A.P.
[Hint: Add ab + bc + ca — a2 — b2 — c2 to each term or let ∝= b-c, β = c-a, =a-b, then ∝+β+= 0]
Sol :
Given: (b – c)2, (c – a)2, (a – b)2 are in A.P
 2(c – a)2 = (b – c)2 + (a – b)2 …(i)

To Prove: $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$ are in AP
or $\frac{2}{c-a}=\frac{1}{b-c}+\frac{1}{a-b}$
$\Rightarrow \frac{2}{c-a}=\frac{a-b+b-c}{(b-c)(a-b)}$
$\Rightarrow \frac{2}{c-a}=\frac{a-c}{(b-c)(a-b)}$
2(b – c)(a – b) = (a – c)(c – a)
2[ab – b2 – ca + cb] = ac – a2 – c2 + ac
2ab – 2b2 – 2ac + 2cb = 2ac – a2 – c2
 a2 + c2 – 4ac = 2b2 – 2ab – 2cb

Adding both sides, a2 + c2, we get
2(a2 + c2) – 4ac = a2 + b2 – 2ab + c2 + b2– 2cb
 2 (a – c)2 = ( b – a)2 + (b – c)2 which is true from (i)
(b – c)2, (c – a)2, (a – b)2 are in A.P
$\therefore \frac{1}{\mathrm{b}-\mathrm{c}}, \frac{1}{\mathrm{c}-\mathrm{a}}, \frac{1}{\mathrm{a}-\mathrm{b}}$ are in AP
Hence Proved

Question 10 A

If a, b, c are in A.P., prove that:
(a-c)2 =4(a-b)(b-c)
Sol :
Given: a, b, c are in AP
 a + c = 2b
$\Rightarrow \mathrm{b}=\frac{\mathrm{a}+\mathrm{c}}{2}$ …(i)

Now taking RHS i.e. 4(a – b)(b – c)
$\Rightarrow 4\left(\mathrm{a}-\frac{\mathrm{a}+\mathrm{c}}{2}\right)\left(\frac{\mathrm{a}+\mathrm{c}}{2}-\mathrm{c}\right)$ [from(i)]
$\Rightarrow 4\left(\frac{2 a-a-c}{2}\right)\left(\frac{a+c-2 c}{2}\right)$
$\Rightarrow 4\left(\frac{a-c}{2}\right)\left(\frac{a-c}{2}\right)$
(a – c)2
= LHS
Hence Proved

Question 10 B

If a, b, c are in A.P., prove that:
a3 + c3 + 6abc = 8b3
Sol :
Given: a, b, c are in AP
 a + c = 2b …(i)
$\Rightarrow \mathrm{b}=\frac{\mathrm{a}+\mathrm{c}}{2}$ …(ii)

Taking Lhs i.e. a3 + c3 + 6abc
$\Rightarrow \mathrm{a}^{3}+\mathrm{c}^{3}+6 \mathrm{ac}\left(\frac{\mathrm{a}+\mathrm{c}}{2}\right)$ [from (i)]
 a3 + c3 + 3ac(a + c)
 a3 + c3 3a2c + 3ac2
 (a + c)3
 (2b)3 [from (ii)]
= 8b3 = RHS
Hence Proved

Question 10 C

If a, b, c are in A.P., prove that:
(a + 2b — c)(2b + c — a)(c + a — b) = 4abc
[Hint: Put b =$\frac{a+c}{2}$ on L.H.S. and R.H.S.]
Sol :
Given: a, b, c are in AP
 a + c = 2b …(i)
$\Rightarrow \mathrm{b}=\frac{\mathrm{a}+\mathrm{c}}{2}$ …(ii)

Now, taking LHS i.e. (a + 2b — c)(2b + c — a)(c + a — b)
$\Rightarrow\left(a+2 \times \frac{a+c}{2}-c\right)\left(2 \times \frac{a+c}{2}+c-a\right)\left(c+a-\frac{a+c}{2}\right)$
[from (ii)]
$\Rightarrow(a+a+c-c)(a+c+c-a)\left(\frac{2 c+2 a-a-c}{2}\right)$
$\Rightarrow(2 \mathrm{a})(2 \mathrm{c})\left(\frac{\mathrm{a}+\mathrm{c}}{2}\right)$
 4abc
[from (ii)]
= RHS
Hence Proved

S.no Chapters Links
1 Real numbers Exercise 1.1
Exercise 1.2
Exercise 1.3
Exercise 1.4
2 Polynomials Exercise 2.1
Exercise 2.2
Exercise 2.3
3 Pairs of Linear Equations in Two Variables Exercise 3.1
Exercise 3.2
Exercise 3.3
Exercise 3.4
Exercise 3.5
4 Trigonometric Ratios and Identities Exercise 4.1
Exercise 4.2
Exercise 4.3
Exercise 4.4
5 Triangles Exercise 5.1
Exercise 5.2
Exercise 5.3
Exercise 5.4
Exercise 5.5
6 Statistics Exercise 6.1
Exercise 6.2
Exercise 6.3
Exercise 6.4
7 Quadratic Equations Exercise 7.1
Exercise 7.2
Exercise 7.3
Exercise 7.4
Exercise 7.5
8 Arithmetic Progressions (AP) Exercise 8.1
Exercise 8.2
Exercise 8.3
Exercise 8.4
9 Some Applications of Trigonometry: Height and Distances Exercise 9.1
10 Coordinates Geometry Exercise 10.1
Exercise 10.2
Exercise 10.3
Exercise 10.4
11 Circles Exercise 11.1
Exercise 11.2
12 Constructions Exercise 12.1
13 Area related to Circles Exercise 13.1
14 Surface Area and Volumes Exercise 14.1
Exercise 14.2
Exercise 14.3
Exercise 14.4
15 Probability Exercise 15.1

No comments:

Post a Comment

Contact Form

Name

Email *

Message *