KC Sinha Mathematics Solution Class 10 Chapter 7 Quadratic Equations Exercise 7.3


Exercise 7.1
Exercise 7.2
Exercise 7.3
Exercise 7.4
Exercise 7.5

Exercise 7.3


Question 1

Determine whether $x=\frac{3}{2}$ and $x=-\frac{4}{3}$ are the solutions of the equation 6x2-x-12=0 or not.
Sol :
Put both the values of x in the equation.
When $x=\frac{3}{2}$
$6\left(\frac{3}{2}\right)^{2}-\frac{3}{2}-12=0$
$6 \times \frac{9}{4}-\frac{3}{2}-12=0$
$\frac{54-48-6}{4}$
$\frac{54-54}{4}$
= 0

When $x=-\frac{4}{3}$
$6\left(-\frac{4}{3}\right)^{2}-\frac{4}{3}-12=0$
$6\left(\frac{16}{9}\right)+\frac{4}{3}-12=0$
$\frac{96+12-108}{9}$
$\frac{108-108}{9}$
= 0
R.H.S = L.H.S
Therefore, $\mathrm{x}=\frac{3}{2}$ and $x=-\frac{4}{3}$ are the solutions of the given equation.

Question 2 

Determine whether (i) x = 1, (ii) x = 3 are the solutions of the equation x2 — 5x + 4 = 0 or not.
Sol :
Put both the values of x in the equation.
When x = 1
12 – 5(1) + 4
1 – 5 + 4
= 0
Therefore, it is the solution to the equation.
When x = 3
32 – 5(3) + 4 = 0
9 – 15 + 4
= –2
Therefore, it is not the solution to the equation.

Question 3 

Determine whether x = √3 and x = —2√3 are solutions of the equation x2 – 3√3x + 6 = 0
Sol :
Put both the values of x in the equation.
When x = √3
(√3)2 –3√3(√3) + 6 = 0
3 – (3)3 + 6
3 – 9 + 6
9 – 9
= 0
Therefore, it is the solution to the equation.
When x = –2√3
(–2√3)2 –3√3(–2√3) + 6 = 0
12 + 18 + 6
= 36
Therefore, it is not the solution to the equation.

Question 4 

For 2x2— 5x —3 = 0, determine which of the following are solutions?
(i) x = 3 
(ii) x= –2
(iii) $x=-\frac{1}{2}$ 
(iv) $x=-\frac{1}{3}$
Sol :
The two possible solutions are x = 3 and $=-\frac{1}{2}$

Since this question is given in standard form, meaning that it follows the form: ax2 + by + c = 0, we can use the quadratic formula to solve for x:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(2)(-3)}}{2 \times 2}$
$x=\frac{5 \pm \sqrt{25+24}}{4}$
$x=\frac{5 \pm 7}{4}$
$x=\frac{5+7}{4}, x=\frac{5-7}{4}$
$\mathrm{x}=\frac{12}{4}, \mathrm{x}=\frac{-2}{4}$
x = 3 , $x=-\frac{1}{2}$
That value of x is correct as well!
Therefore, the two possible solutions are:
x=3
x=−0.50

Question 5 

Determine whether (i) x= √2, (ii) x = –2√2 are the solutions of the equation x2 + √2 x – 4 = 0 or not.
Sol :
Put x = √2
(√2)2 + √2(√2) – 4 = 0
2 + 2 – 4
4 – 4
= 0
Therefore, it is the solution to the equation.
When x = –2√2
(–2√2)2 + √2(–2√2) – 4 = 0
8 – 4 – 4
= 0
Therefore, it is the solution to the equation.

Question 6 

Show that x = — 3 is a solution of x2 + 6x + 9 = 0.
Sol :
Put x = –3 in the equation.
(–3)2 + 6(–3) + 9
9 – 18 + 9
=0
Hence it is a solution

Question 7 

Show that x = — 3 is a solution of 2x2 + 5x –3 = 0.
Sol :
Put x = –3 in the equation.
2(–3)2 + 5(–3) –3 = 0
18 – 15 –3
18 – 18
= 0
Therefore, x = –3 is the solution of the equation.

Question 8 

Show that x = — 2 is a solution of 3x2 + 13x + 14 = 0.
Sol :
The given quadratic equation is 3x2 + 13x + 14 = 0
Putting x = – 2,
L.H.S.
3.(–2)2 + 13.(–2) + 14
3 x 4 – 26 + 14
12 – 26 + 14
26 – 26
= 0
Hence, x = – 2 is a solution of 3x + 13x + 14 = 0

Question 9 

For what value of k, $x=\frac{2}{3}$ is the solution of the equation
kx2 – x – 2 = 0.
Sol 
$x=\frac{2}{3}$
kx2 – x – 2 = 0
$k\left(\frac{2}{3}\right)^{2}-\frac{2}{3}-2$
$\frac{4 \mathrm{k}}{9}-\frac{2}{3}-2$
$\frac{4 \mathrm{k}-6-18}{9}$
4k – 24 = 0
4k = 24
k = 6

Question 10 

For what value of k, $\mathrm{x}=-\frac{1}{2}$ is a solution of the equation 3x2 + 2kx — 3 = 0
Sol :
Put the value of x in the equation.
3x2 + 2kx — 3 = 0
$3\left(-\frac{1}{2}\right)^{2}+2 \mathrm{k}\left(-\frac{1}{2}\right)-3=0$
$\frac{3}{4}-\frac{2 \mathrm{k}}{2}-3=0$
$\frac{3-4 k-12}{4}=0$
–9 – 4k = 0
–4k = 9
$\mathrm{k}=-\frac{9}{4}$

Question 11

For what values of a and b, $x=\frac{3}{4}$ and x = — 2 are solutions of the equation ax2 + bx — 6 = 0.
Sol :
Put x = 3/4
ax2 + bx — 6 = 0
$a\left(\frac{3}{4}\right)^{2}+b\left(\frac{3}{4}\right)-6=0$
$\frac{9 a}{16}+\frac{3 b}{4}-5=0$
$\frac{9 a+12 b-96}{16}=0$
9a + 12b – 96 = 0 divide by 3
3a + 4b – 32 = 0
3a + 4b = 32 (1)

Put x = –2
ax2 + bx — 6 = 0
a(–2)2 + b(–2) – 6 = 0
4a – 2b – 6 = 0
4a – 2b = 6 (2)

Eliminate (1) and (2)
3a + 4b = 32
4a – 2b = 6 ×2

$\begin{aligned}3a+4b&=32\\8a-4b&=12\\ \hline 11a&=44\end{aligned}$
a = 4

Put a = 4 in equation (1).
3a + 4b = 32
3(4) + 4b = 32
12 + 4b = 32
4b = 32 – 12
4b = 20
b = 5

Question 12

For what value of k, x = a is a solution of the equation
x2 – (a + b) x + k = 0.
Sol :
x2 – (a + b)x + k = 0
Put x = a
a2 – (a + b) a + k
a2 – a2 + ab + k = 0
ab + k = 0
k = –ab

Question 13

Determine the value of k, a and b in each of the following quadratic equation, for which the given value of x is the root of the given quadratic equation:
(i) kx2 — 5x + 6 = 0 ; x = 2
(ii) 6x2 + kx — √6 = 0; $x=-\frac{\sqrt{3}}{2}$
(iii) ax2 — 13x + b = 0; x =2 and x = —2 find a, b
(iv) ax2+ bx – 10 = 0; $x=-\frac{2}{5}$ and $x=\frac{5}{3}$
Sol :
(i) kx2 – 5x + 6 = 0
Put x = 2
(ii) k2 – 5(2) + 6 = 0
4k – 10 + 6 = 0
4k = 4
k = 1

(iii) 6x2 + kx -√6 = 0
Put x = – 2/√3
$6\left(-\frac{\sqrt{3}}{2}\right)^{2}+\mathrm{k}\left(-\frac{\sqrt{3}}{2}\right)-\sqrt{6}=0$
$\frac{18}{4}-\frac{\sqrt{3} \mathrm{k}}{2}-\sqrt{6}=0$
$\frac{18-2 \sqrt{3} \mathrm{k}-4 \sqrt{6}}{4}=0$
18 – 2√3 k – 4√6 = 0
18 – 4√6 = 2√3k
$\frac{18-4 \sqrt{6}}{2 \sqrt{3}}=\mathrm{k}$
$\frac{(18-4 \sqrt{6}) 2 \sqrt{3}}{2 \sqrt{3} \times 2 \sqrt{3}}=\mathrm{k}$
$\frac{18 \sqrt{3}-12 \sqrt{2}}{12}=\mathrm{k}$
3√3 – 2√2 = k

(iv) ax2 + bx – 10 = 0
Put $x=-\frac{\sqrt{3}}{2}$
$a\left(-\frac{2}{5}\right)^{2}+b\left(-\frac{2}{5}\right)-10=0$
$\frac{4 a}{25}-\frac{2 b}{5}-10=0$
$\frac{4 a-10 b-250}{25}=0$
4a – 10b – 250 = 0
4a – 10b = 250 (1)
Put x = 3/5
ax2 + bx – 10 = 0
$a\left(\frac{5}{3}\right)^{2}+b\left(\frac{5}{3}\right)-10=0$
$\frac{25 a}{9}+\frac{5 b}{3}-10=0$
$\frac{25 a+15 b-90}{9}=0$
25a + 15b – 90 = 0 (divide by 5)
5a + 3b = 18 (2)
Eliminate (1) and (2)
4a – 10b = 250 ×5
5a + 3b = 18 ×4

$\begin{aligned}20a-50b&=1250\\-2a-12b&=-72\\ \hline -62b&=1178\end{aligned}$

b = –19
Put b = –19 in (1)
4a – 10b = 250
4a – 10(–19) = 250
4a + 190 = 250
4a = 60
a = 15

Question 14 A

Find the roots of the following quadratic equations by factorisation:
2x2 — 5x + 3 = 0
Sol :
2x– 2x – 3x + 3 = 0
2x (x– 1) – 3(x – 1) = 0
(2x – 3) (x – 1) = 0
2x – 3 = 0
$x=\frac{3}{2}$
x – 1 = 0
x =1
Therefore, the roots of the equation are $\frac{3}{2}$, 1.

Question 14 B

Find the roots of the following quadratic equations by factorisation:
3x2 —2√6x +2 = 0
Sol :
3x2 – √6 x – √6 x + 2 = 0
3x2 – √2√3x – √2√3x + 2 = 0
√3x(√3x – √2) – √2 (√3x – √2) = 0
√3x – √2 = 0 √3x – √2 = 0
$\mathrm{x}=\frac{\sqrt{2}}{\sqrt{3}}, \mathrm{x}=\frac{\sqrt{2}}{\sqrt{3}}$
Therefore, the roots of the equation are
 $\frac{\sqrt{2}}{\sqrt{3}}, \frac{\sqrt{2}}{\sqrt{3}}$

Question 14 C

Find the roots of the following quadratic equations by factorisation:
3x2 — 14x — 5 = 0
Sol :
3x2 — 15x + x — 5 = 0
3x (x – 5) + (x – 5) = 0
(3x + 1) (x – 5) = 0
3x + 1 = 0 x – 5 = 0
$x=-\frac{1}{3}$, x=5
Therefore, the roots of the equation are $-\frac{1}{3}, 5$

Question 14 D

Find the roots of the following quadratic equations by factorisation:
$\sqrt{3} \mathrm{x}^{2}+10 \mathrm{x}+7 \sqrt{3}=0$
Sol :
Now, to find the roots by factorisation, we need to factorise 10 such that the sum is 10 and the product is 
7√3×√3=21
We can do that by 7 and 3.
So,
√3x2 + 10x + 7√3 = 0
√3x2 + 3x + 7x + 7√3 = 0
√3x(x + √3) + 7(x + √3) = 0
(√3x + 7)(x + √3) = 0
(√3x + 7) = 0
$\sqrt{3} x=-7$
$x=-\frac{7}{\sqrt{3}}$
Or
x + √3 = 0
x = -√3
Hence, the solutions of the given quadratic equations are -√3 and $-\frac{7}{\sqrt{3}}$.

Question 14 E

Find the roots of the following quadratic equations by factorisation:
√7 y2 – 6y — 13√7 = 0
Sol :
√7 y2 – 13y + 7y — 13 √7 = 0
y (√7 y – 13) + √7 (√7 y – 13) = 0
(√7 y – 13) (y + √7) = 0
√7 y – 13 = 0 y + √7 = 0
$\mathrm{y}=\frac{13}{\sqrt{7}}$ y = –√7
Rationalise
$\mathrm{y}=\frac{13}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$
$\mathrm{y}=\frac{13 \sqrt{7}}{7}$
Therefore, the roots of the equation are $\frac{13 \sqrt{7}}{7}-\sqrt{7}$

Question 14 F

Find the roots of the following quadratic equations by factorisation:
4x2 — 4a2x + a4 — b4 = 0
Sol :
4x2 – {2(a2 + b2) + 2(a2 – b2)}x + (a2 + b2) (a2 – b2) = 0
4x2 – 2(a2 + b2)x + 2(a2 – b2) x + (a2 + b2) (a2 – b2) = 0
2x {2x – (a2 + b2)} – (a2 – b2) {2x – (a2 + b2)} = 0
{2x – (a2 – b2)} {2x – (a2 + b2)} = 0
2x – (a2 – b2) = 0 2x – (a2 + b2) = 0
2x = (a2 – b2) 2x = (a2 + b2)
$x=\frac{a^{2}-b^{2}}{2}, x=\frac{a^{2}+b^{2}}{2}$
Therefore, the roots of the equation are $\frac{a^{2}-b^{2}}{2} ,\frac{a^{2}+b^{2}}{2}$

Question 15 A

a2b2x2 + b2x – a2x — 1 = 0, a ≠ 0, b ≠ 0
Sol :
b2x {a2x + 1} – 1 {a2x + 1} = 0
(b2x – 1) (a2x + 1) = 0
b2x – 1 = 0 a2x + 1 = 0
$x=\frac{1}{b^{2}}, x=\frac{-1}{a^{2}}$
Therefore, the roots of the equation are $\frac{1}{b^{2}}, \frac{-1}{a^{2}}$

Question 15 B

36x2 — 12ax + (a2 — b2) = 0
Sol :
(6x)2 – 2 (6x)a + a2 — b2 = 0
Using Identity:
(x– y)2 = x2 + y2 – 2xy
Here, (6x–a)2 = (6x)2 – 2 (6x) a + a2
(6x – a)2 – b2 = 0
Using identity:
x2 – y2 = (a+ b) (a – b)
(6x –a + b) (6x – a – b) =0
6x = a – b 6x = a + b
$x=\frac{a-b}{6},x=\frac{a+b}{6}$
Therefore, the roots of the equation are$\frac{a-b}{6}, \frac{a+b}{6}$

Question 15 C

10ax2 — 6x + 15ax – 9 = 0, a ≠ 0
Sol :
2x (5ax – 3) + 3 (5ax – 3) = 0
2x+3 =0 5ax – 3 = 0
$x=-\frac{3}{2}, x=\frac{3}{50}$
Therefore, roots of the equation are$\frac{3}{50},-\frac{3}{2}$

Question 15 D

12abx2 — (9a2 — 8b2) x — 6ab = 0
Sol :
12abx2 — 9a2 x— 8b2x — 6ab = 0
3ax (4bx – 3a) + 2b (4bx – 3a) = 0
3ax + 2b =0 4bx – 3a =0
$x=-\frac{2 b}{3 a}, x=\frac{3 a}{4 b}$
Therefore, roots of the equation are $-\frac{2 \mathrm{b}}{3 \mathrm{a}}, \frac{3 \mathrm{a}}{4 \mathrm{b}}$

Question 15 E

4x2 — 2 (a2 + b2) x + a2b2 = 0
Sol :
4x2 — 2a2x+ 2b2x + a2b2 = 0
2x (2x – a2) – b2 (2x – a2) = 0
2x – b2 = 0 2x – a2 = 0
$x=\frac{b^{2}}{2} ,x=\frac{a^{2}}{2}$

Question 16 A

Find the roots of the following quadratic equations, if they exist by the method of completing the square:
5x2 – 6x – 2 = 0
Sol :
5x2 – 6x – 2 = 0
Dividing by 5
$x^{2}-\frac{6 x}{5}-\frac{2}{5}=0$
We know
(a – b)2 = a2 – 2ab + b2

Here, a=x and –2ab =$-\frac{6 x}{5}$
–2xb = $-\frac{6 x}{5}$( a =x)
–2b = $-\frac{6}{5}$
$\mathrm{b}=-\frac{6}{5 \times(-2)}$
$\mathrm{b}=\frac{3}{5}$
 Equation becomes

$x^{2}-\frac{6 x}{5}-\frac{2}{5}=0$
Add and subtract $\left(\frac{3}{5}\right)^{2}$
$x^{2}-\frac{6 x}{5}-\frac{2}{5}+\left(\frac{3}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}=0$
$x^{2}-\frac{6 x}{5}+\left(\frac{3}{5}\right)^{2}-\frac{2}{5}-\left(\frac{3}{5}\right)^{2}=0$
$\left(x-\frac{3}{5}\right)^{2}=\left(\frac{3}{5}\right)^{2}+\frac{2}{5}$
$\left(x-\frac{3}{5}\right)^{2}=\frac{9}{25}+\frac{2}{5}$
$\left(x-\frac{3}{5}\right)^{2}=\frac{9+2(5)}{25}$
$\left(x-\frac{3}{5}\right)^{2}=\frac{9+10}{25}$
$\left(x-\frac{3}{5}\right)^{2}=\frac{19}{25}$
$\left(x-\frac{3}{5}\right)^{2}=\frac{(\sqrt{19})^{2}}{(5)^{2}}$

Canceling squares both sides
$\left(x-\frac{3}{5}\right)=\pm \frac{\sqrt{19}}{5}$

Solving
$\left(x-\frac{3}{5}\right)=\frac{\sqrt{19}}{5}\left(x-\frac{3}{5}\right)=-\frac{\sqrt{19}}{5}$

$x=\frac{\sqrt{19}}{5}+\frac{3}{5} x=\frac{-\sqrt{19}}{5}+\frac{3}{5}$
$x=\frac{\sqrt{19}+3}{5} ,x=\frac{-\sqrt{19}+3}{5}$
So, $\mathrm{x}=\frac{\sqrt{19}+3}{5}$ and $x=\frac{-\sqrt{19}+3}{5}$ are the roots of the equation.

Question 16 B

Find the roots of the following quadratic equations, if they exist by the method of completing the square:
2x2 – 5x + 3 = 0
Sol :
2x2 – 5x + 3 = 0
Dividing by 2
$x^{2}-\frac{5 x}{2}+\frac{3}{2}=0$
$x^{2}-\frac{5 x}{2}=-\frac{3}{2}$

Add a coefficient of $\left(\frac{x}{2}\right)^{2}$ to both sides
$x^{2}-\frac{5 x}{2}+\left(\frac{5}{4}\right)^{2}=-\frac{3}{2}+\left(\frac{5}{4}\right)^{2}$
$\left(x-\frac{5}{4}\right)^{2}=-\frac{3}{2}+\frac{25}{16}$
$\left(x-\frac{5}{4}\right)^{2}=\frac{-24+25}{16}$
$\left(x-\frac{5}{4}\right)^{2}=\frac{1}{16}$
$x-\frac{5}{4}=\sqrt{\frac{1}{16}}$
$x=\frac{1}{4}+\frac{5}{4}, x=-\frac{1}{4}+\frac{5}{4}$
$x=\frac{6}{4}=\frac{3}{2}, x=\frac{4}{4}=1$

Question 16 C

Find the roots of the following quadratic equations, if they exist by the method of completing the square:
9x2 – 15x + 6 = 0
Sol :
Dividing by 9
$x^{2}-\frac{15 x}{9}+\frac{6}{9}=0$
$x^{2}-\frac{15 x}{9}=-\frac{2}{3}$

Add a coefficient of $\left(\frac{x}{2}\right)^{2}$ to both sides
$\mathrm{x}^{2}-\frac{15 \mathrm{x}}{9}+\left(\frac{15}{18}\right)^{2}=-\frac{2}{3}+\left(\frac{15}{18}\right)^{2}$
$\left(x-\frac{15}{18}\right)^{2}=-\frac{2}{3}+\frac{25}{36}$
$\left(x-\frac{15}{18}\right)^{2}=\frac{25-24}{36}$
$\left(x-\frac{15}{18}\right)^{2}=\frac{1}{36}$
$x-\frac{15}{18}=\frac{\sqrt{1}}{\sqrt{36}}$
$x=\frac{1}{6}+\frac{5}{6}$, $x=-\frac{1}{6}+\frac{5}{6}$
$x=\frac{6}{6}=1, x=\frac{4}{6}=\frac{2}{3}$


Question 16 D

Find the roots of the following quadratic equations, if they exist by the method of completing the square:
x2 – 9x + 18 = 0
Sol :
x2 – 9x = –18
Add the coefficient of $\left(\frac{x}{2}\right)^{2}$ to both sides
$x^{2}-9 x+\left(\frac{9}{2}\right)^{2}=-18+\left(\frac{9}{2}\right)^{2}$
$\left(x-\frac{9}{2}\right)^{2}=-18+\frac{81}{4}$
$\left(x-\frac{9}{2}\right)^{2}=\frac{-72+81}{4}$
$\left(x-\frac{9}{2}\right)^{2}=\frac{9}{4}$
$x-\frac{9}{2}=\frac{\sqrt{9}}{\sqrt{4}}$
$x-\frac{9}{2}=\frac{\pm 3}{2}$
$x=-\frac{3}{2}+\frac{9}{2}, x=\frac{3}{2}+\frac{9}{2}$
$x=\frac{6}{2}=3, x=\frac{12}{2}=6$

Question 16 E

Find the roots of the following quadratic equations, if they exist by the method of completing the square:
2x2 + x + 4 = 0
Sol :
$x^{2}+\frac{x}{2}+2=0$
$x^{2}+\frac{x}{2}=-2$

Add the coefficient of $\left(\frac{x}{2}\right)^{2}$ to both sides
$x^{2}+\frac{x}{2}+\left(\frac{1}{4}\right)^{2}=-2+\left(\frac{1}{4}\right)^{2}$
$\left(x+\frac{1}{4}\right)^{2}=-2+\frac{1}{16}$
$\left(x+\frac{1}{4}\right)^{2}=\frac{-32+1}{16}$
$\left(x+\frac{1}{4}\right)^{2}=\frac{-31}{16}$
$x+\frac{1}{4}=\sqrt{-\frac{31}{16}}$
Since root cannot be negative

Therefore, no real roots exist.

Question 17 A

Find the roots of each of the following quadratic equations if they exist by the method of completing the squares:
2x2 – 5x + 3 = 0
Sol :
$x^{2}-\frac{5 x}{2}+\frac{3}{2}=0$
$x^{2}-\frac{5 x}{2}=-\frac{3}{2}$

Add the coefficient of $\left(\frac{x}{2}\right)^{2}$ to both sides
$x^{2}-\frac{5 x}{2}+\left(\frac{5}{4}\right)^{2}=-\frac{3}{2}+\left(\frac{5}{4}\right)^{2}$
$\left(x-\frac{5}{4}\right)^{2}=-\frac{3}{2}+\frac{25}{16}$
$\left(x-\frac{5}{4}\right)^{2}=\frac{-24+25}{16}$
$\left(x-\frac{5}{4}\right)^{2}=\frac{1}{16}$
$x-\frac{5}{4}=\frac{\sqrt{1}}{\sqrt{16}}$
$x=\frac{1+5}{4}, x=\frac{-1+5}{4}$
$x=\frac{6}{4}=\frac{3}{2}, x=\frac{4}{4}=1$

Question 17 B

Find the roots of each of the following quadratic equations if they exist by the method of completing the squares:
x2 – 6x + 4 = 0
Sol :
x2 – 6x = –4
Add the coefficient of $\left(\frac{x}{2}\right)^{2}$ to both sides
x2 – 6x + (3)2 = –4 + (3)2
(x – 3)2 = –4 + 9
x – 3 = √5
x = ±√5 + 3

Question 17 C

Find the roots of each of the following quadratic equations if they exist by the method of completing the squares:
√5x2 + 9x + 4√5 = 0
Sol :
Divide by √5
$x^{2}+\frac{9 x}{\sqrt{5}}=-4$
Add the coefficient of $\left(\frac{x}{2}\right)^{2}$ to both sides
$x^{2}+\frac{9 x}{\sqrt{5}}+\left(\frac{9}{2 \sqrt{5}}\right)^{2}=-4+\left(\frac{9}{2 \sqrt{5}}\right)^{2}$
$\left(x+\frac{9}{2 \sqrt{5}}\right)^{2}=-4+\frac{81}{20}$
$\left(x+\frac{9}{2 \sqrt{5}}\right)^{2}=\frac{-80+81}{20}$
$x+\frac{9}{2 \sqrt{5}}=\frac{\sqrt{1}}{\sqrt{20}}$
$\mathrm{x}=\frac{1}{2 \sqrt{5}}-\frac{9}{2 \sqrt{5}}, \mathrm{x}=\frac{-1}{2 \sqrt{5}}-\frac{9}{2 \sqrt{5}}$
$\mathrm{x}=-\frac{8}{2 \sqrt{5}}=-\frac{4}{\sqrt{5}}, \mathrm{x}=-\frac{10}{2 \sqrt{5}}=-\frac{5}{\sqrt{5}}$
$x=-\frac{5}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}=-\frac{5 \sqrt{5}}{5}=-\sqrt{5}$

Question 17 D

Find the roots of each of the following quadratic equations if they exist by the method of completing the squares:
2x2 + √15 x + √2 = 0
Sol :
Divide by 2
$\mathrm{x}^{2}+\frac{\sqrt{15 \mathrm{x}}}{2}=-\frac{\sqrt{2}}{2}$
Add the coefficient of $\left(\frac{x}{2}\right)^{2}$ to both sides
$\mathrm{x}^{2}+\frac{\sqrt{15 \mathrm{x}}}{2}+\left(\frac{\sqrt{15}}{4}\right)^{2}=-\frac{\sqrt{2}}{2}+\left(\frac{\sqrt{15}}{4}\right)^{2}$
$\left(x+\frac{\sqrt{15}}{4}\right)^{2}=-\frac{\sqrt{2}}{2}+\frac{15}{16}$
$\left(x+\frac{\sqrt{15}}{4}\right)^{2}=\frac{-8 \sqrt{2}+15}{16}$
Since root cannot be negative
Therefore, it has no real roots.

Question 17 E

Find the roots of each of the following quadratic equations if they exist by the method of completing the squares:
x2 + x + 3 = 0
Sol :
x2 + x = –3
Add the coefficient of $\left(\frac{x}{2}\right)^{2}$ to both sides
$x^{2}+x+\left(\frac{1}{2}\right)^{2}=-3+\left(\frac{1}{2}\right)^{2}$
$\left(x+\frac{1}{2}\right)^{2}=-3+\frac{1}{4}$
$\left(x+\frac{1}{2}\right)^{2}=\frac{-12+1}{4}$
$\left(x+\frac{1}{2}\right)^{2}=\frac{-11}{4}$
$x+\frac{1}{2}=\sqrt{-\frac{11}{4}}$
Since root cannot be negative
Therefore, it has no real roots.

Question 18 A

Solve the following equations by the method of completion of a square.
5x2 – 24x – 5 = 0
Sol :
Dividing by 5
$x^{2}-\frac{24 x}{5}-\frac{5}{5}=0$
$x^{2}-\frac{24 x}{5}=1$

Add the coefficient of $\left(\frac{x}{2}\right)^{2}$ to both sides
$x^{2}-\frac{24 x}{5}+\left(\frac{24}{10}\right)^{2}=1+\left(\frac{24}{10}\right)^{2}$
$\left(x-\frac{24}{10}\right)^{2}=1+5.76$
$x-\frac{24}{10}=\sqrt{6.76}$
x = 2.6 + 2.4 x = –2.6 + 2.4
x = 5 x = – 0.2

Question 18 B

Solve the following equations by the method of completion of a square.
7x2 – 13x – 2 = 0
Sol :
Divide by 7
$x^{2}-\frac{13 x}{7}=\frac{2}{7}$

Add the coefficient of $\left(\frac{x}{2}\right)^{2}$ to both sides
$x^{2}-\frac{13 x}{7}+\left(\frac{13}{14}\right)^{2}=\frac{2}{7}+\left(\frac{13}{14}\right)^{2}$
$\left(x-\frac{13}{14}\right)^{2}=\frac{2}{7}+\frac{169}{196}$
$\left(x-\frac{13}{14}\right)^{2}=\frac{56+169}{196}$
$\left(x-\frac{13}{14}\right)^{2}=\frac{225}{196}$
$x-\frac{13}{14}=\frac{\sqrt{225}}{\sqrt{196}}$
$x-\frac{13}{14}=\frac{15}{14}$
$x=\frac{15+13}{14} ,x=\frac{-15+13}{14}$
$x=\frac{28}{14}=2 x=-\frac{2}{14}=-\frac{1}{7}$

Question 18 C

Solve the following equations by the method of completion of a square.
15x2 + 53x + 42 = 0
Sol :
Divide by 15
$x^{2}+\frac{53 x}{15}=-\frac{42}{15}$

Add the coefficient of $\left(\frac{x}{2}\right)^{2}$ to both sides
$x^{2}+\frac{53 x}{15}+\left(\frac{53}{30}\right)^{2}=-\frac{42}{15}+\left(\frac{53}{30}\right)^{2}$
$\left(x+\frac{53}{30}\right)^{2}=-\frac{42}{15}+\frac{2809}{900}$
$\left(x+\frac{53}{30}\right)^{2}=\frac{-2520+2809}{900}$
$x+\frac{53}{30}=\frac{\sqrt{289}}{\sqrt{900}}$
$x=\frac{17}{30}-\frac{53}{30}, x=-\frac{17}{30}-\frac{53}{30}$
$x=-\frac{6}{5} ,x=-\frac{7}{3}$

Question 18 D

Solve the following equations by the method of completion of a square.
7x2 + 2x – 5 = 0
Sol :
Divide by 7
$x^{2}+\frac{2 x}{7}=\frac{5}{7}$

Add the coefficient of $\left(\frac{x}{2}\right)^{2}$ to both sides
$x^{2}+\frac{2 x}{7}+\left(\frac{2}{14}\right)^{2}=\frac{5}{7}+\left(\frac{2}{14}\right)^{2}$
$\left(x+\frac{2}{14}\right)^{2}=\frac{5}{7}+\frac{4}{196}$
$\left(x+\frac{2}{14}\right)^{2}=\frac{140+4}{196}$
$\left(x+\frac{2}{14}\right)^{2}=\frac{144}{196}$
$x+\frac{2}{14}=\frac{\sqrt{144}}{\sqrt{196}}$
$x+\frac{2}{14}=\frac{12}{14}$
$x=\frac{12-2}{14} ,x=\frac{-12-2}{14}$
$x=\frac{10}{14}=\frac{5}{7} ,x=-\frac{14}{14}=-1$


S.no Chapters Links
1 Real numbers Exercise 1.1
Exercise 1.2
Exercise 1.3
Exercise 1.4
2 Polynomials Exercise 2.1
Exercise 2.2
Exercise 2.3
3 Pairs of Linear Equations in Two Variables Exercise 3.1
Exercise 3.2
Exercise 3.3
Exercise 3.4
Exercise 3.5
4 Trigonometric Ratios and Identities Exercise 4.1
Exercise 4.2
Exercise 4.3
Exercise 4.4
5 Triangles Exercise 5.1
Exercise 5.2
Exercise 5.3
Exercise 5.4
Exercise 5.5
6 Statistics Exercise 6.1
Exercise 6.2
Exercise 6.3
Exercise 6.4
7 Quadratic Equations Exercise 7.1
Exercise 7.2
Exercise 7.3
Exercise 7.4
Exercise 7.5
8 Arithmetic Progressions (AP) Exercise 8.1
Exercise 8.2
Exercise 8.3
Exercise 8.4
9 Some Applications of Trigonometry: Height and Distances Exercise 9.1
10 Coordinates Geometry Exercise 10.1
Exercise 10.2
Exercise 10.3
Exercise 10.4
11 Circles Exercise 11.1
Exercise 11.2
12 Constructions Exercise 12.1
13 Area related to Circles Exercise 13.1
14 Surface Area and Volumes Exercise 14.1
Exercise 14.2
Exercise 14.3
Exercise 14.4
15 Probability Exercise 15.1

No comments:

Post a Comment

Contact Form

Name

Email *

Message *